During a heart attack, ischemia causes losses of billions of cells; this is especially concerning given the minimal regenerative capability of cardiomyocytes (CMs). Heart remuscularization utilizing stem cells has improved cardiac outcomes despite little cell engraftment, thereby shifting focus to cell-free therapies. Consequently, we chose induced pluripotent stem cells (iPSCs) given their pluripotent nature, efficacy in previous studies, and easy obtainability from minimally invasive techniques.
View Article and Find Full Text PDFSynchronized contractions of cardiomyocytes within the heart are tightly coupled to electrical stimulation known as excitation-contraction coupling. Calcium plays a key role in this process and dysregulated calcium handling can significantly impair cardiac function and lead to the development of cardiomyopathies and heart failure. Here, we describe a method and analytical technique to study myofilament-localized calcium signaling using the intensity-based fluorescent biosensor, RGECO-TnT.
View Article and Find Full Text PDFStem cell therapy for cardiac regeneration has been gaining traction as a possible intervention for the reduction of the burden associated with MI and heart failure. However, stem cell therapies have several shortcomings, including poor engraftment, limited improvements in cardiac function, and possible teratogenicity. Recently, extracellular vesicles (EVs) from stem cell sources have been explored as a novel therapy to regenerate the injured myocardium in several animal MI trials.
View Article and Find Full Text PDFThe use of stem cells to repair the heart after a myocardial infarction (MI) remains promising, yet clinical trials over the past 20 years suggest that cells fail to integrate into the native tissue, resulting in limited improvements in cardiac function. Here, we demonstrate the cardioprotective potential of a composite inserting human amniotic stromal mesenchymal stem cells (ASMCs) in a chitosan and hyaluronic acid (C/HA) based hydrogel in a rat MI model. Mechanical characterization of the C/HA platform indicated a swift elastic conversion at 40°C and a rapid sol-gel transition time at 37°C.
View Article and Find Full Text PDFPlanar cell polarity (PCP) pathway is crucial for tissue morphogenesis. Mutations in PCP genes cause multi-organ anomalies including dysplastic kidneys. Defective PCP signaling was postulated to contribute to cystogenesis in polycystic kidney disease.
View Article and Find Full Text PDF