The hearts of salmonids display remarkable plasticity, adapting to various environmental factors that influence cardiac function and demand. For instance, in response to cold temperature, the salmonid heart undergoes growth and remodeling to counterbalance the reduced contractile function associated with dropping temperatures. Alongside heart size, the distinct pyramidal shape of the wild salmonid heart is essential for optimal cardiac performance, yet the environmental drivers behind this optimal cardiac morphology remain to be fully understood.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
June 2024
Salmonid fish include some of the most valued cultured fish species worldwide. Unlike most other fish, the hearts of salmonids, including Atlantic salmon and rainbow trout, have a well-developed coronary circulation. Consequently, their hearts' reliance on oxygenation through coronary arteries leaves them prone to coronary lesions, believed to precipitate myocardial ischemia.
View Article and Find Full Text PDFCardiomyopathy syndrome (CMS) caused by piscine myocarditis virus (PMCV) is a severe cardiac disease in Atlantic salmon (Salmo salar) and one of the leading causes of morbidity and mortality in the Norwegian aquaculture industry. Previous research suggest a variation in individual susceptibility to develop severe disease, however the role of the immune response in determining individual outcome of CMS is poorly understood particularly in cases where fish are also challenged by stress. The present study's aim was therefore to characterize cardiac transcriptional responses to PMCV infection in Atlantic salmon responding to infection under stressful conditions with a high versus low degree of histopathological damage.
View Article and Find Full Text PDFLaboratory zebrafish are commonly infected with the intracellular, brain-infecting microsporidian parasite Pseudoloma neurophilia. Chronic P. neurophilia infections induce inflammation in meninges, brain and spinal cord, and have been suggested to affect neural functions since parasite clusters reside inside neurons.
View Article and Find Full Text PDFModulation of brain serotonin (5-HT) signalling is associated with parasite-induced changes in host behaviour, potentially increasing parasite transmission to predatory final hosts. Such alterations could have substantial impact on host physiology and behaviour, as 5-HT serves multiple roles in neuroendocrine regulation. These effects, however, remain insufficiently understood, as parasites have been associated with both increased and decreased serotonergic activity.
View Article and Find Full Text PDFResearch conducted on model organisms may be biased due to undetected pathogen infections. Recently, screening studies discovered high prevalence of the microsporidium Pseudoloma neurophilia in zebrafish (Danio rerio) facilities. This spore-forming unicellular parasite aggregates in brain regions associated with motor function and anxiety, and despite its high occurrence little is known about how sub-clinical infection affects behaviour.
View Article and Find Full Text PDFSome parasite species alter the behavior of intermediate hosts to promote transmission to the next host in the parasite's life cycle. This is the case for , a brain-encysting trematode parasite that causes behavioral changes in the California killifish (). These manipulations increase predation by the parasite's final host, piscivorous marsh birds.
View Article and Find Full Text PDFCardiac disease is a growing concern in farmed animals, and stress has been implicated as a factor for myocardial dysfunction and mortality in commercial fish rearing. We recently showed that the stress hormone cortisol induces pathological cardiac remodelling in rainbow trout. Wild and farmed salmonids are exposed to fluctuations and sometimes prolonged episodes of increased cortisol levels.
View Article and Find Full Text PDFCrucian carp () survive without oxygen for several months, but it is unknown whether they are able to protect themselves from cell death normally caused by the absence, and particularly return, of oxygen. Here, we quantified cell death in brain tissue from crucian carp exposed to anoxia and re-oxygenation using the terminal deoxy-nucleotidyl transferase dUTP nick-end labelling (TUNEL) assay, and cell proliferation by immunohistochemical staining for proliferating cell nuclear antigen (PCNA) as well as PCNA mRNA expression. We also measured mRNA and protein expression of the apoptosis executer protease caspase 3, in laboratory fish exposed to anoxia and re-oxygenation and fish exposed to seasonal anoxia and re-oxygenation in their natural habitat over the year.
View Article and Find Full Text PDFStress and elevated cortisol levels are associated with pathological heart growth and cardiovascular disease in humans and other mammals. We recently established a link between heritable variation in post-stress cortisol production and cardiac growth in salmonid fish too. A conserved stimulatory effect of the otherwise catabolic steroid hormone cortisol is probably implied, but has to date not been established experimentally.
View Article and Find Full Text PDFIn many vertebrate species visible melanin-based pigmentation patterns correlate with high stress- and disease-resistance, but proximate mechanisms for this trait association remain enigmatic. Here we show that a missense mutation in a classical pigmentation gene, melanocyte stimulating hormone receptor (MC1R), is strongly associated with distinct differences in steroidogenic melanocortin 2 receptor (MC2R) mRNA expression between high- (HR) and low-responsive (LR) rainbow trout (Oncorhynchus mykiss). We also show experimentally that cortisol implants increase the expression of agouti signaling protein (ASIP) mRNA in skin, likely explaining the association between HR-traits and reduced skin melanin patterning.
View Article and Find Full Text PDFSignalling systems activated under stress are highly conserved, suggesting adaptive effects of their function. Pathologies arising from continued activation of such systems may represent a mismatch between evolutionary programming and current environments. Here, we use Atlantic salmon (Salmo salar) in aquaculture as a model to explore this stance of evolutionary-based medicine, for which empirical evidence has been lacking.
View Article and Find Full Text PDFScientific research and public debate on the welfare of animals in human custody is increasing at present. Fish are in this context mentioned with particular attention to the high numbers of individuals reared in aquaculture. Research on fish has also contributed to the understanding of individual variation in the ability to cope with stress and disease.
View Article and Find Full Text PDFAnimals use aggressive behaviour to gain access to resources, and individuals adjust their behaviour relative to resource value and own resource holding potential (RHP). Normally, smaller individuals have inferior fighting abilities compared with larger conspecifics. Affective and cognitive processes can alter contest dynamics, but the interaction between such effects and that of differing RHPs has not been adjudged.
View Article and Find Full Text PDFComparative studies are imperative for understanding the evolution of adaptive neurobiological processes such as neural plasticity, cognition, and emotion. Previously we have reported that prolonged omission of expected rewards (OER, or 'frustrative nonreward') causes increased aggression in Atlantic salmon (Salmo salar). Here we report changes in brain monoaminergic activity and relative abundance of brain derived neurotrophic factor (BDNF) and dopamine receptor mRNA transcripts in the same paradigm.
View Article and Find Full Text PDFPhysiological and behavioural responses to environmental change are individually variable traits, which manifest phenotypically and are subject to natural selection as correlated trait-clusters (coping styles, behavioural syndromes, or personality traits). Comparative research has revealed a range of neuroendocrine-behavioural associations which are conserved throughout the vertebrate subphylum. Regulatory mechanisms universally mediate a switch between proactive (e.
View Article and Find Full Text PDFA surging interest in the evolution of consistent trait correlations has inspired research on pigment patterns as a correlate of behavioural syndromes, or "animal personalities". Associations between pigmentation, physiology and health status are less investigated as potentially conserved trait clusters. In the current study, lice counts performed on farmed Atlantic salmon Salmo salar naturally infected with ectoparasitic sea lice Lepeophtheirus salmonis showed that individual fish with high incidence of black melanin-based skin spots harboured fewer female sea lice carrying egg sacs, compared to less pigmented fish.
View Article and Find Full Text PDFComp Biochem Physiol Part D Genomics Proteomics
June 2012
Here we use a comparative model to investigate how behavioral and physiological traits correlate with neural plasticity. Selection for divergent post-stress cortisol levels in rainbow trout (Oncorhynchus mykiss) has yielded low- (LR) and high responsive (HR) lines. Recent reports show low behavioral flexibility in LR compared to HR fish and we hypothesize that this divergence is caused by differences in neural plasticity.
View Article and Find Full Text PDFCardiac disease is frequently reported in farmed animals, and stress has been implicated as a factor for myocardial dysfunction in commercial fish rearing. Cortisol is a major stress hormone in teleosts, and this hormone has adverse effects on the myocardium. Strains of rainbow trout (Oncorhynchus mykiss) selected for divergent post-stress cortisol levels [high responsive (HR) and low responsive (LR)] have been established as a comparative model to examine how fish with contrasting stress-coping styles differ in their physiological and behavioral profiles.
View Article and Find Full Text PDFComp Biochem Physiol Part D Genomics Proteomics
June 2011
In rainbow trout (Oncorhynchus mykiss), selection for divergent post-stress plasma cortisol levels has yielded low (LR)- and high (HR) responsive lines, differing in behavioural and physiological aspects of stress coping. For instance, LR fish display prolonged retention of a fear response and of previously learnt routines, compared to HR fish. This study aims at investigating putative central nervous system mechanisms controlling behaviour and memory retention.
View Article and Find Full Text PDF