Pancreas disease (PD) is a serious challenge in European salmonid aquaculture caused by salmonid alphavirus (SAV). In this study, we report the effect of immunization of Atlantic salmon with three attenuated infectious SAV3 strains with targeted mutations in a glycosylation site of the envelope E2 protein and/or in a nuclear localization signal in the capsid protein. In a pilot experiment, it was shown that the mutated viral strains replicated in fish, transmitted to naïve cohabitants and that the transmission had not altered the sequences.
View Article and Find Full Text PDFSalmonid alphavirus (SAV) is the cause of pancreas disease and sleeping disease in farmed salmonid fish in Europe. The spread of these diseases has been difficult to control with biosecurity and current vaccination strategies, and increased understanding of the viral pathogenesis could be beneficial for the development of novel vaccine strategies. N-glycosylation of viral envelope proteins may be crucial for viral virulence and a possible target for its purposed attenuation.
View Article and Find Full Text PDFSalmonid alphavirus (SAV) is the etiological cause of pancreas disease (PD) in Atlantic salmon (Salmo salar). Several vaccines against SAV are in use, but PD still cause significant mortality and concern in European aquaculture, raising the need for optimal tools to monitor SAV immunity. To monitor and control the distribution of PD in Norway, all salmonid farms are regularly screened for SAV by RT-qPCR.
View Article and Find Full Text PDF