Background: Inflammatory bowel disease (IBD) is characterized by recurrent inflammation of the gastrointestinal tract and has been linked to an imbalance in gut bacteria. Synbiotics, which combine probiotics and prebiotics, are emerging as potential IBD treatments.
Aim: To examine the effects of four synbiotic formulations on intestinal inflammation and peripheral biomarkers in a rodent IBD model of both sexes.
Eur Neuropsychopharmacol
August 2021
Our understanding of pathophysiological mechanisms underlying anorexia nervosa (AN) is incomplete. The aim was to conduct a metabolomics profiling of serum samples from women with AN (n = 65), women who have recovered from AN (AN-REC, n = 65), and age-matched healthy female controls (HC, n = 65). Serum concentrations of 21 metabolites were measured using proton nuclear magnetic resonance (H NMR).
View Article and Find Full Text PDFObjective: Both environmental and genetic factors are known to contribute to the development of anorexia nervosa (AN), but the exact etiology remains poorly understood. Herein, we studied the transcriptional regulation of the endocannabinoid system, an interesting target for body weight maintenance and the control of food intake and energy balance.
Method: We used two well-characterized animal models of AN: (a) the activity-based anorexia (ABA) model in which rats, housed with running wheels and subjected to daily food restriction, show reductions in body weight and increase in physical activity; (b) the genetic anx/anx mouse displaying the core features of AN: low food intake and emaciation.
The anorectic mouse exhibits a mitochondrial complex I dysfunction that is related to aberrant expression of hypothalamic neuropeptides and transmitters regulating food intake. Hypothalamic activity, i.e.
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
August 2015
Inflammation and impaired mitochondrial oxidative phosphorylation are considered key players in the development of several metabolic disorders, including diabetes. We have previously shown inflammation and mitochondrial dysfunction in the hypothalamus of an animal model for anorexia, the anx/anx mouse. Moreover, increased incidence of eating disorders, e.
View Article and Find Full Text PDFAnorexia, meaning poor appetite, occurs in many human conditions, for example, anorexia nervosa, cachexia, and failure to thrive in infants. A key player in the regulation of appetite/food intake in general, as well as conditions of anorexia, is the hypothalamus, in particular, the AGRP/NPY and POMC/CART neurons in the arcuate nucleus. In this chapter, we review the hypothalamic aberrances seen in the anorectic anx/anx mouse.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2011
The anorectic anx/anx mouse exhibits disturbed feeding behavior and aberrances, including neurodegeneration, in peptidergic neurons in the appetite regulating hypothalamic arcuate nucleus. Poor feeding in infants, as well as neurodegeneration, are common phenotypes in human disorders caused by dysfunction of the mitochondrial oxidative phosphorylation system (OXPHOS). We therefore hypothesized that the anorexia and degenerative phenotypes in the anx/anx mouse could be related to defects in the OXPHOS.
View Article and Find Full Text PDFMice homozygous for the anorexia (anx) mutation are characterized by poor food intake and death by three to five weeks after birth. By P21 these mice display lower density of hypothalamic neuropeptides, including Agouti gene-related protein (AGRP). The AGRP/neuropeptide Y (NPY) system of the anx/anx mice develops normally until postnatal day (P) 12, then the normal increase in fiber density ceases, in some areas even distinctly decreases.
View Article and Find Full Text PDF