Publications by authors named "Icksoo Lee"

Mitochondria are essential to cellular function as they generate the majority of cellular ATP, mediated through oxidative phosphorylation, which couples proton pumping of the electron transport chain (ETC) to ATP production. The ETC generates an electrochemical gradient, known as the proton motive force, consisting of the mitochondrial membrane potential (ΔΨ, the major component in mammals) and ΔpH across the inner mitochondrial membrane. Both ATP production and reactive oxygen species (ROS) are linked to ΔΨ, and it has been shown that an imbalance in ΔΨ beyond the physiological optimal intermediate range results in excessive ROS production.

View Article and Find Full Text PDF

Cytochrome (Cyt) is important for both mitochondrial respiration and apoptosis, both of which are altered in cancer cells that switch to Warburg metabolism and manage to evade apoptosis. We earlier reported that lysine 53 (K53) of Cyt is acetylated in prostate cancer. K53 is conserved in mammals that is known to be essential for binding to cytochrome oxidase and apoptosis protease activating factor-1 (Apaf-1).

View Article and Find Full Text PDF

Background: Brain injury is a leading cause of morbidity and mortality in patients resuscitated from cardiac arrest. Mitochondrial dysfunction contributes to brain injury following cardiac arrest; therefore, therapies that limit mitochondrial dysfunction have the potential to improve neurological outcomes. Generation of reactive oxygen species (ROS) during ischemia-reperfusion injury in the brain is a critical component of mitochondrial injury and is dependent on hyperactivation of mitochondria following resuscitation.

View Article and Find Full Text PDF

Skeletal muscle is more resilient to ischemia-reperfusion injury than other organs. Tissue specific post-translational modifications of cytochrome c (Cytc) are involved in ischemia-reperfusion injury by regulating mitochondrial respiration and apoptosis. Here, we describe an acetylation site of Cytc, lysine 39 (K39), which was mapped in ischemic porcine skeletal muscle and removed by sirtuin5 in vitro.

View Article and Find Full Text PDF

Noninvasive delivery of near-infrared light (IRL) to human tissues has been researched as a treatment for several acute and chronic disease conditions. We recently showed that use of specific IRL wavelengths, which inhibit the mitochondrial enzyme cytochrome oxidase (COX), leads to robust neuroprotection in animal models of focal and global brain ischemia/reperfusion injury. These life-threatening conditions can be caused by an ischemic stroke or cardiac arrest, respectively, two leading causes of death.

View Article and Find Full Text PDF

Ischemic stroke affects over 77 million people annually around the globe. Due to the blockage of a blood vessel caused by a stroke, brain tissue becomes ischemic. While prompt restoration of blood flow is necessary to save brain tissue, it also causes reperfusion injury.

View Article and Find Full Text PDF

In memoriam of Bernhard Kadenbach: Although the main focus of his research was the structure, function, and regulation of mitochondrial cytochrome c oxidase (CytOx), he earlier studied the mitochondrial phosphate carrier and found an essential role of cardiolipin. Later, he discovered tissue-specific and developmental-specific protein isoforms of CytOx. Defective activity of CytOx is found with increasing age in human muscle and neuronal cells resulting in mitochondrial diseases.

View Article and Find Full Text PDF

Numerous naturally occurring molecules have been studied for their beneficial health effects. Many compounds have received considerable attention for their potential medical uses. Among them, several substances have been found to improve mitochondrial function.

View Article and Find Full Text PDF

Prostate cancer is the second leading cause of cancer-related death in men. Two classic cancer hallmarks are a metabolic switch from oxidative phosphorylation (OxPhos) to glycolysis, known as the Warburg effect, and resistance to cell death. Cytochrome (Cyt) is at the intersection of both pathways, as it is essential for electron transport in mitochondrial respiration and a trigger of intrinsic apoptosis when released from the mitochondria.

View Article and Find Full Text PDF

Excessive alcohol consumption causes the cellular and tissue damage. The toxic metabolites of ethanol are harmful to multiple organ systems, such as the central nervous system, skeletal muscles, and liver, and cause alcohol-induced diseases like cancer, as well as induce hepatotoxicity, and alcoholic myopathy. Alcohol exposure leads to a surge in hepatic alcohol metabolism and oxygen consumption, a decrease in hepatic ATP, and the rapid accumulation of lipid within hepatocytes.

View Article and Find Full Text PDF

Near-infrared light (IRL) has been evaluated as a therapeutic for a variety of pathological conditions, including ischemia/reperfusion injury of the brain, which can be caused by an ischemic stroke or cardiac arrest. Strategies have focused on modulating the activity of mitochondrial electron transport chain (ETC) enzyme cytochrome c oxidase (COX), which has copper centers that broadly absorb IRL between 700 and 1,000 nm. We have recently identified specific COX-inhibitory IRL wavelengths that are profoundly neuroprotective in rodent models of brain ischemia/reperfusion through the following mechanism: COX inhibition by IRL limits mitochondrial membrane potential hyperpolarization during reperfusion, which otherwise causes reactive oxygen species (ROS) production and cell death.

View Article and Find Full Text PDF

We previously reported that serine-47 (S47) phosphorylation of cytochrome (Cyt) in the brain results in lower cytochrome oxidase (COX) activity and caspase-3 activity in vitro. We here analyze the effect of S47 modification in fibroblast cell lines stably expressing S47E phosphomimetic Cyt, unphosphorylated WT, or S47A Cyt. Our results show that S47E Cyt results in partial inhibition of mitochondrial respiration corresponding with lower mitochondrial membrane potentials (ΔΨ) and reduced reactive oxygen species (ROS) production.

View Article and Find Full Text PDF

Cytochrome c (Cytc)is a cellular life and death decision molecule that regulates cellular energy supply and apoptosis through tissue specific post-translational modifications. Cytc is an electron carrier in the mitochondrial electron transport chain (ETC) and thus central for aerobic energy production. Under conditions of cellular stress, Cytc release from the mitochondria is a committing step for apoptosis, leading to apoptosome formation, caspase activation, and cell death.

View Article and Find Full Text PDF

Cytochrome c (Cytc) is a multifunctional protein, acting as an electron carrier in the electron transport chain (ETC), where it shuttles electrons from bc complex to cytochrome c oxidase (COX), and as a trigger of type II apoptosis when released from the mitochondria. We previously showed that Cytc is regulated in a highly tissue-specific manner: Cytc isolated from heart, liver, and kidney is phosphorylated on Y97, Y48, and T28, respectively. Here, we have analyzed the effect of a new Cytc phosphorylation site, threonine 58, which we mapped in rat kidney Cytc by mass spectrometry.

View Article and Find Full Text PDF

Cytochrome (Cyt) is a multifunctional protein that operates as an electron carrier in the mitochondrial electron transport chain and plays a key role in apoptosis. We have previously shown that tissue-specific phosphorylations of Cyt in the heart, liver, and kidney play an important role in the regulation of cellular respiration and cell death. Here, we report that Cyt purified from mammalian brain is phosphorylated on S47 and that this phosphorylation is lost during ischemia.

View Article and Find Full Text PDF

Ischemic stroke is a debilitating disease that causes significant brain injury. While restoration of blood flow is critical to salvage the ischemic brain, reperfusion can exacerbate damage by inducing generation of reactive oxygen species (ROS). Recent studies by our group found that non-invasive mitochondrial modulation with near-infrared (NIR) light limits ROS generation following global brain ischemia.

View Article and Find Full Text PDF

Myricetin is a biologically active natural polyphenol with beneficial effects on metabolic health. This study aimed to examine the effects of myricetin on the expression levels of genes involved in lipolysis and mitochondrial respiration in adipocytes and the anti-obesity potential of myricetin. The results indicated that myricetin reduced triglyceride (TG) content and increased mitochondrial content and oxygen consumption rate (OCR) in adipocytes in vitro.

View Article and Find Full Text PDF

Cytochrome c (Cyt c) plays a vital role in the mitochondrial electron transport chain (ETC). In addition, it is a key regulator of apoptosis. Cyt c has multiple other functions including ROS production and scavenging, cardiolipin peroxidation, and mitochondrial protein import.

View Article and Find Full Text PDF

The interaction of light with biological tissue has been successfully utilized for multiple therapeutic purposes. Previous studies have suggested that near infrared light (NIR) enhances the activity of mitochondria by increasing cytochrome c oxidase (COX) activity, which we confirmed for 810 nm NIR. In contrast, scanning the NIR spectrum between 700 nm and 1000 nm revealed two NIR wavelengths (750 nm and 950 nm) that reduced the activity of isolated COX.

View Article and Find Full Text PDF

Liu, J, Lee, I, Feng, H-Z, Galen, SS, Hüttemann, PP, Perkins, GA, Jin, J-P, Hüttemann, M, and Malek, MH. Aerobic exercise preconception and during pregnancy enhances oxidative capacity in the hindlimb muscles of mice offspring. J Strength Cond Res 32(5): 1391-1403, 2018-Little is known about the effect of maternal exercise on offspring skeletal muscle health.

View Article and Find Full Text PDF

HPV-positive oropharyngeal cancer patients experience significantly lower locoregional recurrence and higher overall survival in comparison with HPV-negative patients, especially among those who received radiation therapy. The goal of the present study is to investigate the molecular mechanisms underlying the differential radiation sensitivity between HPV-negative and HPV-positive head and neck squamous cell carcinoma (HNSCC). Here, we show that HPV-negative HNSCC cells exhibit increased glucose metabolism as evidenced by increased production of lactate, while HPV-positive HNSCC cells effectively utilize mitochondrial respiration as evidenced by increased oxygen consumption.

View Article and Find Full Text PDF

Cytochrome oxidase (COX) is the terminal enzyme of the electron transport chain and catalyzes the transfer of electrons from cytochrome to oxygen. COX consists of 14 subunits, three and eleven encoded, respectively, by the mitochondrial and nuclear DNA. Tissue- and condition-specific isoforms have only been reported for COX but not for the other oxidative phosphorylation complexes, suggesting a fundamental requirement to fine-tune and regulate the essentially irreversible reaction catalyzed by COX.

View Article and Find Full Text PDF

Mammalian cytochrome c (Cytc) plays a key role in cellular life and death decisions, functioning as an electron carrier in the electron transport chain and as a trigger of apoptosis when released from the mitochondria. However, its regulation is not well understood. We show that the major fraction of Cytc isolated from kidneys is phosphorylated on Thr, leading to a partial inhibition of respiration in the reaction with cytochrome c oxidase.

View Article and Find Full Text PDF