Modern science focuses on sustainability-oriented innovation. Structurally sophisticated lignin is a sustainable alternative to non-renewable resources. Over the last several years, a tremendous scientific effort has been made to innovate lignin-based sustainable materials for numerous advanced applications.
View Article and Find Full Text PDFThis study presents the first development of Cu (I) acylthiourea complexes (C1-C5) incorporated polycaprolactone/lignin (PCL/Lig) electrospun nanofiber composites (PCL/Lig@Cu(I)). Electrospinning conditions and mass ratios of PCL and lignin were optimized, followed by the incorporation of varying concentrations of Cu(I) complexes. Structural, morphological, and thermal properties were characterized using SEM, TEM, FT-IR, XRD, TGA and WCA analyses.
View Article and Find Full Text PDFThis study aimed to develop polyvinyl alcohol (PVA) and kappa-carrageenan (κCA) biocomposite films using a Pickering emulsion technique for wound care applications. Juniper essential oil and modified sepiolite were incorporated to enhance functionality, with films prepared via solvent casting and characterized for structural, thermal, and mechanical properties. The PCOS-2 film exhibited the highest mechanical performance, with Young's modulus of 6.
View Article and Find Full Text PDFCu-doping contents in the TiO lattice structure were studied to show the effects on the crystal structure, morphology, and photocatalytic activity of TiO nanoparticles and thus composite cellulosic nanofibrous membranes. Pristine and copper-doped TiO nanoparticles were synthesized using the sol-gel technique, a wet chemical method with the advantages of low synthesizing temperature, uniform nanosize distribution, and purity. The as-synthesized semiconductor nanoparticles were first tested with the dye removal process and then impregnated onto electrospun cellulose nanofibers (CL nanofibers) to acquire modified nanofibers with self-cleaning properties.
View Article and Find Full Text PDFHerein, this study was compiled to investigate a suitable solution for the fabrication and development of the multifunctional defense tent from previously reported research. The military always needs to protect their soldiers and equipment from detection. The advancement of infrared detection technology emphasizes the significance of infrared camouflage materials, reducing thermal emissions for various applications.
View Article and Find Full Text PDFCompostable zein-polycaprolactone (PZ) electrospun nanofiber integrated with different concentrations of Aster yomena extract loaded halloysite nanotubes (A. yomena-HNT) as bioactive nanofibrous food packaging is reported. SEM micrographs reveal heterogeneous nanofibers.
View Article and Find Full Text PDFHerein, for the very first time, we report a paper-like biomass, eggshell membrane (ESM), as a suitable platform for the fabrication of a colorimetric sensor (E-Cot). Green ethanolic extract, curcumin (CUR), was used as a sensing material to coat with the ESM. The present E-Cot effectively changed its color (yellow to red) in the real-time monitoring for chicken spoilage.
View Article and Find Full Text PDFMicro-to-nano transformation can make a material unique. This research uses jute microfiber to extract Holo and Alpha forms of cellulose, which are later attempted to electrospun into superfine nanofibers (NFs). Initial investigation of morphological, physicochemical, crystallographic, and thermal properties confirmed successful synthesis of Holo and Alpha-cellulose (H/A-cellulose).
View Article and Find Full Text PDFThe development of hybrid composite antibacterial agents for wound dressing has garnered significant attention due to their remarkable antibacterial efficacy and their potential to mitigate microbial resistance. In this study, we present an approach to designing and fabricating wound dressing membranes, utilizing molybdenum oxide-polyacrylonitrile (MoO/PAN) hybrid composites through electrospinning. Subsequently, we enhanced the membrane's effectiveness by introducing silver (Ag@MoO/PAN) into the matrix via a rapid (within one min) green synthesis method under UV irradiation.
View Article and Find Full Text PDFThe development of conversion-typed anodes with ultrafast charging and large energy storage is quite challenging due to the sluggish ions/electrons transfer kinetics in bulk materials and fracture of the active materials. Herein, the design of porous carbon nanofibers/SnS composite (SnS @N-HPCNFs) for high-rate energy storage, where the ultrathin SnS nanosheets are nanoconfined in N-doped carbon nanofibers with tunable void spaces, is reported. The highly interconnected carbon nanofibers in three-dimensional (3D) architecture provide a fast electron transfer pathway and alleviate the volume expansion of SnS , while their hierarchical porous structure facilitates rapid ion diffusion.
View Article and Find Full Text PDFThe present review article discusses the elementary concepts of the sensor mechanism and various types of materials used for sensor applications. The electrospinning method is the most comfortable method to prepare the device-like structure by means of forming from the fiber structure. Though there are various materials available for sensors, the important factor is to incorporate the functional group on the surface of the materials.
View Article and Find Full Text PDFThe development of useful biomaterials has resulted in significant advances in various fields of science and technology. The demand for new biomaterial designs and manufacturing techniques continues to grow, with the goal of building a sustainable society. In this study, two types of DNA-cationic surfactant complexes were synthesized using commercially available deoxyribonucleic acid from herring sperm DNA (hsDNA, <50 bp) and deoxyribonucleic acid from salmon testes DNA (stDNA, ~2000 bp).
View Article and Find Full Text PDFIn this research, electrospun PVA/Zein/Gelatin based tri-component active food packaging has been fabricated to enhance the shelf life of food by assuring the food quality (freshness, taste, brittleness, color, etc.) for longer. Electrospinning imparts good morphological properties along with breathability in nanofibrous mats.
View Article and Find Full Text PDFPromising scaffolds for developing advanced tissue engineering architectures have emerged in recent years through the use of nanofibers and 3D printing technologies. Despite this, structural integrity and cell proliferation are highlighted as fundamental challenges for design scaffolds and future prospects. As a biomimetic scaffold, the nanofiber-reinforced hydrogels demonstrated a better compressive modulus and cell growth.
View Article and Find Full Text PDFIntroduction: Nanofibers are one of the role-playing innovations of nanotechnology. Their high surface-to-volume ratio allows them to be actively functionalized with a wide range of materials for a variety of applications. The functionalization of nanofibers with different metal nanoparticles (NPs) has been studied widely to fabricate antibacterial substrates to battle antibiotic-resistant bacteria.
View Article and Find Full Text PDFIn this study, sustainable water-based films were produced via the solvent-casting method. Petroleum-free-based polyvinyl alcohol (PVA) and carbohydrate-based inulin (INL) were used as matrices. Vegetable-waste pumpkin powder was used in the study because of its sustainability and antibacterial properties.
View Article and Find Full Text PDFThe use of artificial biomaterial with enhanced bioactivity for osteostimulation is a major research concern at present days. In this research, antibacterial and osteostimulative core-shell lignin nanoparticles (LgNP) were synthesized from alkali lignin using tetrahydrofuran (THF) as solvent via a simultaneous pH and solvent shifting technology. Later, LgNP-loaded polycaprolactone (PCL) composite nanofibers were fabricated via the electrospinning technique.
View Article and Find Full Text PDFof the Special Issue: [...
View Article and Find Full Text PDFModernization and the global fashion market demand continuous improvements in upland cotton cultivars ( L.) to meet these improved fiber characteristics (fiber length, fiber strength, micronaire) requirements. Researchers have centered their efforts on improved fiber quality; however, the efforts are not immediately supporting the textile sector.
View Article and Find Full Text PDFIn recent years, adsorption-based membranes have been widely investigated to remove and separate textile pollutants. However, cyclic adsorption-desorption to reuse a single adsorbent and clear scientific evidence for the adsorption-desorption mechanism remains challenging. Herein, silk nanofibers were used to assess the adsorption potential for the typical anionic dyes from an aqueous medium, and they show great potential toward the removal of acid dyes from the aqueous solution with an adsorption rate of ∼98% in a 1 min interaction.
View Article and Find Full Text PDFis a valuable reforestation conifer and traditional medicinal plant. In order to retain the physiological and pharmacological activities of the plant and obtain a fibrous material with better antibacterial properties, a mixed solvent of dichloromethane and ,'-dimethylformamide was used to obtain the leaf extracts, and leaf extract (ScLE)-loaded PCL/PVP microfibers were successfully fabricated by electrospinning. The whole preparation process was carried out at room temperature to avoid deterioration of active ingredients.
View Article and Find Full Text PDFAntibacterial and cyto-compatible tricomponent composite electrospun nanofibers comprised of polyvinyl alcohol (PVA), copper II oxide nanoparticles (CuONPs), and (bitter gourd, MC) extract were examined for their potential application as an effective wound dressing. Metallic nanoparticles have a wide range of applications in biomedical engineering because of their excellent antibacterial properties; however, metallic NPs have some toxic effects as well. The green synthesis of nanoparticles is undergoing development with the goal of avoiding toxicity.
View Article and Find Full Text PDFThe hybridization of natural and synthetic fibers leads to composites' optimum mechanical properties. In this study, an attempt was made to study the effect of the stacking sequence on PBS-based Glass-Jute (GJ) hybrid composites. Six types of hybrid composite, each containing five different layers of jute and glass fabric, were manufactured by the compression molding method.
View Article and Find Full Text PDFThis study demonstrated a controllable release properties and synergistic antibacterial actions between orange essential oil (OEO) and silver nanoparticles (AgNPs) incorporated onto cellulose (CL) nanofibers. The preparation of AgNPs attached on CL nanofibers was conducted through multiple processes including the deacetylation process to transform cellulose acetate (CA) nanofibers to CL nanofibers, the in situ synthesis of AgNPs, and the coating of as-prepared silver composite CL nanofibers using OEO solutions with two different concentrations. The success of immobilization of AgNPs onto the surface of CL nanofibers and the incorporation of OEO into the polymer matrix was confirmed by SEM-EDS, TEM, XRD, and FT-IR characterizations.
View Article and Find Full Text PDFThe fabrication of skin-care products with therapeutic properties has been significant for human health trends. In this study, we developed efficient hydrophilic composite nanofibers (NFs) loaded with the folic acid (FA) by electrospinning and electrospraying processes for tissue engineering or wound healing cosmetic applications. The morphological, chemical and thermal characteristics, in vitro release properties, and cytocompatibility of the resulting composite fibers with the same amount of folic acid were analyzed.
View Article and Find Full Text PDF