Publications by authors named "Ick-Chan Kwon"

In recent years, notable advances in nanotechnology-based drug delivery have emerged. A particularly promising platform in this field is DNA origami-based nanoparticles, which offer highly programmable surfaces, providing precise control over the nanoscale spacing and stoichiometry of various cargo. These versatile particles are finding diverse applications ranging from basic molecular biology to diagnostics and therapeutics.

View Article and Find Full Text PDF

In recent years, notable advances in nanotechnology-based drug delivery have emerged. A particularly promising platform in this field is DNA origami-based nanoparticles, which offer highly programmable surfaces, providing precise control over the nanoscale spacing and stoichiometry of various cargo. These versatile particles are finding diverse applications ranging from basic molecular biology to diagnostics and therapeutics.

View Article and Find Full Text PDF

A series of successes in RNA interference (RNAi) therapies for liver diseases using lipid nanoparticles and -acetylgalactosamine have heralded a current era of RNA therapeutics. However, alternative delivery strategies are required to take RNAi out of the comfort zone of hepatocytes. Here we report SIRPα IgV/anti-CD47 siRNA (vS-siCD47) conjugates that selectively and persistently disrupt the antiphagocytic CD47/SIRPα axis in solid tumors.

View Article and Find Full Text PDF

Growing evidence has demonstrated that miRNA-21 (miR-21) upregulation is closely associated with tumor pathogenesis. However, the mechanisms by which miR-21 inhibition modulates the immunosuppressive tumor microenvironment (TME) and improves tumor sensitivity to immune checkpoint blockade therapies remain largely unexplored. In this study, we demonstrate the precise delivery of anti-miR-21 using a PD-L1-targeting peptide conjugate (P21) to the PD-L1 TME.

View Article and Find Full Text PDF

Cancer immunotherapy represents a revolutionary strategy, leveraging the patient's immune system to inhibit tumor growth and alleviate the immunosuppressive effects of the tumor microenvironment (TME). The recent emergence of immune checkpoint blockade (ICB) therapies, particularly following the first approval of cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) inhibitors like ipilimumab, has led to significant growth in cancer immunotherapy. The extensive explorations on diverse immune checkpoint antibodies have broadened the therapeutic scope for various malignancies.

View Article and Find Full Text PDF

Multivalent presentation of ligands often enhances receptor activation and downstream signalling. DNA origami offers a precise nanoscale spacing of ligands, a potentially useful feature for therapeutic nanoparticles. Here we use a square-block DNA origami platform to explore the importance of the spacing of CpG oligonucleotides.

View Article and Find Full Text PDF

Current SARS-CoV-2 vaccines have demonstrated robust induction of neutralizing antibodies and CD4 T cell activation, however CD8 responses are variable, and the duration of immunity and protection against variants are limited. Here we repurposed our DNA origami vaccine platform, DoriVac, for targeting infectious viruses, namely SARS-CoV-2, HIV, and Ebola. The DNA origami nanoparticle, conjugated with infectious-disease-specific HR2 peptides, which act as highly conserved antigens, and CpG adjuvant at precise nanoscale spacing, induced neutralizing antibodies, Th1 CD4 T cells, and CD8 T cells in naïve mice, with significant improvement over a bolus control.

View Article and Find Full Text PDF

During the COVID-19 pandemic, expedient vaccine production has been slowed by the shortage of safe and effective raw materials, such as adjuvants, essential components to enhance the efficacy of vaccines. Monophosphoryl lipid A (MPLA) is a potent and safe adjuvant used in human vaccines, including the Shingles vaccine, Shingrix. 3-O-desacyl-4'-monophosphoryl lipid A (MPL), a representative MPLA adjuvant commercialized by GSK, was prepared via chemical conversion of precursors isolated from Salmonella typhimurium R595.

View Article and Find Full Text PDF

Anti-epidermal growth factor receptor (EGFR) antibody, cetuximab, therapy has significantly improved the clinical outcomes of patients with colorectal cancer, but the response to cetuximab can vary widely among individuals. We thus need strategies for predicting the response to this therapy. However, the current methods are unsatisfactory in their predictive power.

View Article and Find Full Text PDF

Interactions of various ligands and receptors have been extensively investigated because they regulate a series of signal transduction leading to various functional cellular outcomes. The receptors on cell membrane recognize their specific ligands, resulting in specific binding between ligands and receptors. Accumulating evidence reveals that the receptors recognize the difference on the spatial characteristics of ligands as well as the types of ligands.

View Article and Find Full Text PDF

Highly immunosuppressive tumor microenvironment containing various protumoral immune cells accelerates malignant transformation and treatment resistance. In particular, tumor-associated macrophages (TAMs), as the predominant infiltrated immune cells in a tumor, play a pivotal role in regulating the immunosuppressive tumor microenvironment. As a potential therapeutic strategy to counteract TAMs, here we explore an exosome-guided direct reprogramming of tumor-supportive M2-polarized TAMs into tumor-attacking M1-type macrophages.

View Article and Find Full Text PDF

A new anticancer strategy to exploit abnormal metabolism of cancer cells rather than to merely control the drug release or rearrange the tumor microenvironment is reported. An antiglycolytic amphiphilic polymer, designed considering the unique metabolism of cancer cells (Warburg effect) and aimed at the regulation of glucose metabolism, is synthesized through chemical conjugation between glycol chitosan (GC) and phenylboronic acid (PBA). GC-PBA derivatives form stable micellar structures under physiological conditions and respond to changes in glucose concentration.

View Article and Find Full Text PDF

RNA interference (RNAi) is a major cellular mechanism regulating gene expression in which short double-stranded RNA molecules called small interfering RNA (siRNA) mediate sequence-specific mRNA degradation. RNAi technology has recently emerged as a promising therapeutic platform for the effective treatment of various diseases caused by inappropriate gene activity, such as cancer. However, the clinical translation of siRNA therapeutics has been hampered by the major hurdles associated with biological instability and limited delivery efficiency.

View Article and Find Full Text PDF

Despite advances in cancer therapy, the discovery of effective cancer treatments remains challenging. In this study, a simple method was developed to increase the efficiency of doxorubicin (DOX) delivery in a lung metastasis model. This method comprises a simple configuration to increase the delivery efficiency precise engineering of the size, shape, loading content, and biodegradability of the drug delivery system.

View Article and Find Full Text PDF

Upregulation of oncogenic miRNA21 (miR-21) plays a pivotal role in proliferation, migration and invasion of cancer cells. In addition to cancer cells, tumor-associated macrophages (TAMs) also have high abundance of miR-21, which accelerates malignant progression of tumors in the late stages of carcinogenesis. Despite of the pro-tumorigenic functions of miR-21 in TAMs and cancer cells, reliable therapeutic strategies to simultaneously inhibit miR-21 activity in both types of cell have not yet been developed.

View Article and Find Full Text PDF

Direct lineage conversion holds great promise in the regenerative medicine field for restoring damaged tissues using functionally engineered counterparts. However, current methods of direct lineage conversion, even those using virus-mediated transgenic expression of tumorigenic factors, are extremely inefficient (~25%). Thus, advanced methodologies capable of revolutionizing efficiency and addressing safety concerns are key to clinical translation of these technologies.

View Article and Find Full Text PDF

MicroRNAs (miRNAs), a recently discovered class of noncoding RNAs, play pivotal roles in regulating fundamental biological processes by suppressing the expression of target genes. Aberrant miRNA expression is commonly correlated with human diseases, including cancers. Anti-miRNA oligonucleotides provide an innovative therapeutic strategy for silencing disease-associated miRNAs.

View Article and Find Full Text PDF

Extracellular vesicles (EV) deliver cargoes such as nucleic acids, proteins, and lipids between cells and serve as an intercellular communicator. As it is revealed that most of the functions associated to EVs are closely related to the immune response, the important role of EVs in inflammatory diseases is emerging. EVs can be functionalized through EV surface engineering and endow targeting moiety that allows for the target specificity for therapeutic applications in inflammatory diseases.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) are essential mediators in intercellular communication that have emerged as natural therapeutic nanomedicines for the treatment of intractable diseases. Their therapeutic applications, however, have been limited by unpredictable in vivo biodistribution after systemic administration. To control the in vivo fate of EVs, their surfaces should be properly edited, depending on the target site of action.

View Article and Find Full Text PDF

Nanoparticles have been used for effectively delivering imaging agents and therapeutic drugs into stem cells. However, nanoparticles are not sufficiently internalized into stem cells; thus, new delivery method of nanoparticles into stem cells is urgently needed. Herein, we develop bicyclo[6.

View Article and Find Full Text PDF

Non-invasive tracking of T-cells may help to predict the patient responsiveness and therapeutic outcome. Herein, we developed bioorthogonal T-cell labeling and tracking strategy using bioorthogonal click chemistry. First, ovalbumin (OVA) antigen-specific cytotoxic T-cells (CTLs) were incubated with N-azidoacetyl-D-mannosamine-tetraacylated (AcManNAz) for incorporating azide (N) groups on the surface of CTLs via metabolic glycoengineering.

View Article and Find Full Text PDF

Direct local delivery of immunogenic cell death (ICD) inducers to a tumor site is an attractive approach for leading ICD effectively, due to enabling the concentrated delivery of ICD inducers to the tumor site. Herein, we prepared doxorubicin (DOX)-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) using different molecular weight PLGA (7000 g/mol and 12,000 g/mol), showing different drug release kinetics. The different release kinetics of DOX might differently stimulate a tumor cell-specific immune response by releasing damage-associated molecular patterns (DAMPs), resulting in showing a different antitumor response in the living body.

View Article and Find Full Text PDF

Objective: It is unclear if stopping treatment with dabigatran, a new oral anticoagulant (NOAC), induces a paradoxical rebound prothrombotic state. We investigated if short-term (1-3 days) dabigatran cessation is associated with a higher thrombus volume than expected from a simple reversal of the anticoagulant effect.

Methods: Ten-week-old C57Bl/6 mice (n = 338) received one of the following oral treatments: phosphate-buffered saline (PBS), dabigatran for 7 days with or without 1 to 4 day cessation, and aspirin in either a single dose or daily for 7 days.

View Article and Find Full Text PDF

The dense extracellular matrix (ECM) in heterogeneous tumor tissues can prevent the deep tumor penetration of drug-loaded nanoparticles, resulting in a limited therapeutic efficacy in cancer treatment. Herein, we suggest that the deep tumor penetration of doxorubicin (DOX)-loaded glycol chitosan nanoparticles (CNPs) can be improved using high-intensity focused ultrasound (HIFU) technology. Firstly, we prepared amphiphilic glycol chitosan-5β-cholanic acid conjugates that can self-assemble to form stable nanoparticles with an average of 283.

View Article and Find Full Text PDF

Nanomedicine is extensively employed for cancer treatment owing to its unique advantages over conventional drugs and imaging agents. This increased attention to nanomedicine, however, has not fully translated into clinical utilization and patient benefits due to issues associated with reticuloendothelial system clearance, tumor heterogeneity, and complexity of the tumor microenvironment. To address these challenges, efforts are being made to modify the design of nanomedicines, including optimization of their physiochemical properties, active targeting, and response to stimuli, but these studies are often performed independently.

View Article and Find Full Text PDF