Publications by authors named "Ichitsubo T"

Article Synopsis
  • The first successful isolation and characterization of transition metal complexes featuring the Al(I)-H unit were carried out, resulting in W and Fe complexes with yields of 43-63%.
  • The synthesis was achieved through a one-step reaction involving specific precursors and was characterized using various techniques, including NMR and IR spectroscopy, as well as DFT calculations.
  • Additionally, the strong σ-donating property of the :AlH(NHC) ligand and the positively polarized coordination bonds were confirmed, alongside the validation of the Aluminum's monovalent oxidation state through X-ray photoelectron spectroscopy.
View Article and Find Full Text PDF

This study focuses on the cation intercalation of structurally unique compounds synthesized from the partial dehydration and deprotonation of coordinated water molecules in hydrous materials. Partial dehydration can potentially result in hydrous materials with a porous nature, which maintains the parent structure of the material, and deprotonation causes oxidation in the hydrous materials. Li-intercalation experiments were conducted on the hydrous iron(II) phosphate mineral, vivianite (Fe2+3(PO)·8HO), and its oxidized and partially dehydrated product, santabarbaraite.

View Article and Find Full Text PDF

MnTe is considered a promising candidate for next-generation phase change materials owing to the reversible and nonvolatile phase transformation between its α and β' phases by irradiation of a nanosecond laser or application of a pulse voltage. In this work, for a faster phase control of MnTe, the response of metastable β-MnTe thin films to femtosecond (fs) laser irradiation was investigated. Using ultrafast optical spectroscopy, we inferred transient phase transformation.

View Article and Find Full Text PDF

Spinel oxides are promising for high-potential cathode materials of photo-rechargeable batteries. However, LiMnMO (M = Mn) shows a rapid degradation during charge/discharge under the illumination of UV-visible light. Here, we investigate various spinel-oxide materials by modifying the composition (M = Fe, Co, Ni, Zn) to demonstrate photocharging in a water-in-salt aqueous electrolyte.

View Article and Find Full Text PDF

Magnesium rechargeable batteries (MRBs) promise to be the next post lithium-ion batteries that can help meet the increasing demand for high-energy, cost-effective, high-safety energy storage devices. Early prototype MRBs that use molybdenum-sulfide cathodes have low terminal voltages, requiring the development of oxide-based cathodes capable of overcoming the sulfide's low Mg conductivity. Here, we fabricate an ultraporous (>500 m g) and ultrasmall (<2.

View Article and Find Full Text PDF

Rechargeable magnesium batteries are promising candidates for post-lithium-ion batteries, owing to the large source abundance and high theoretical energy density. However, there remain few reports on constructing practical cells with oxide cathodes and Mg anodes at room temperature. In this work, we compare the reaction behavior of various MnO polymorph cathodes in two representative electrolytes: Mg[TFSA]/G3 and Mg[Al(hfip)]/G3.

View Article and Find Full Text PDF

We present a method for obtaining a three-dimensional quantitative hydrogen distribution in a Ni-MH battery cathode using laser-induced breakdown spectroscopy (LIBS) and demonstrate that the reaction distribution in the cathode can be interpreted based on a state-of-charge (SOC) distribution converted from the hydrogen distribution. In this method, we measured the hydrogen emission-line intensities at 656.28 nm for a model cathode cycled five times at 2.

View Article and Find Full Text PDF

Photocharging of high-potential spinel LiMnO is demonstrated by using a water-in-salt electrolyte and TiO nanoparticles. In a developed half-cell system with an electron acceptor, Li extraction from LiMnO proceeds under the illumination of UV-visible light at an estimated rate of ∼23 mA g. This work paves the way for high-potential cathode materials in photo-rechargeable batteries.

View Article and Find Full Text PDF

Importance of heat storage materials has recently been increasing. Although various types of heat storage materials have been reported to date, there are few well-balanced energy storage materials in terms of long lifetime, reversibility, energy density, reasonably fast charge/discharge capability, and treatability. Here we report an interesting discovery that a commonly known substance, birnessite-type layered manganese dioxide with crystal water (δ-type KMnO⋅ nHO), exhibits a water-intercalation mechanism and can be an excellently balanced heat storage material, from the above views, that can be operated in a solid state with water as a working pair.

View Article and Find Full Text PDF

Strain is known to enhance the activity of the oxygen reduction reaction in catalytic platinum alloy nanoparticles, whose inactivity is the primary impediment to efficient fuel cells and metal-air batteries. Bragg coherent diffraction imaging (BCDI) was employed to reveal the strain evolution during the voltammetric cycling in Pt-Ni alloy nanoparticles composed of PtNi, PtNi, and PtNi. Analysis of the 3D strain images using a core-shell model shows that the strain as large as 5% is induced on Pt-rich shells due to Ni dissolution.

View Article and Find Full Text PDF

Development of metal-anode rechargeable batteries is a challenging issue. Especially, magnesium rechargeable batteries are promising in that Mg metal can be free from dendrite formation upon charging. However, in case of oxide cathode materials, inserted magnesium tends to form MgO-like rocksalt clusters in a parent phase even with another structure, which causes poor cyclability.

View Article and Find Full Text PDF

Since the launch of lithium-ion batteries, elements (such as silicon, tin, or aluminum) that can be alloyed with lithium have been expected as anode materials, owing to larger capacity. However, their successful application has not been accomplished because of drastic structural degradation caused by cyclic large volume change during battery reactions. To prolong lifetime of alloy anodes, we must circumvent the huge volume strain accompanied by insertion/extraction of lithium.

View Article and Find Full Text PDF

One of the key challenges when developing magnesium rechargeable batteries (MRB) is to develop Mg-intercalation cathodes exhibiting higher redox potentials with larger specific capacities. Although Mg-transition-metal spinel oxides have been shown to be excellent candidates as MRB cathode materials by utilizing the valence change from trivalent to divalent of transition metals starting from Mg insertion, there is no clear evidence to date that Mg can be indeed extracted from the initial spinel hosts by utilizing the change from trivalent to quadrivalent. In this work, we clearly present various experimental evidences of the electrochemical extraction of Mg from spinel MgMnO.

View Article and Find Full Text PDF

Mg(TFSA)/triglyme(G3)-based electrolytes (TFSA: bis (trifluoromethanesulfonyl) amide) are one of candidates for magnesium rechargeable batteries, but the passivation of Mg-metal anode due to the TFSA anion is fatal in practical use. In this work we show that at elevated temperatures around 150 °C a comparable amount of MgCl salt can be dissolved in concentrated Mg(TFSA)/G3 solutions, and the passivation of Mg metal is markedly suppressed in such highly concentrated solutions (1 ≤ G3/Mg-salts ≤ 2) in comparison with in the dilute solutions (G3/Mg-salts ≫ 2). By decreasing the amount of G3 solvent, the solvation structure of Mg ions is modified in that free TFSA anions are drastically lowered, which would consequently decrease the reactivity of TFSA anions.

View Article and Find Full Text PDF

The local atomic structures of amorphous Ge-Sb-Te phase-change materials have yet to be clarified and the rapid crystal-amorphous phase change resulting in distinct optical contrast is not well understood. We report the direct observation of local atomic structures in amorphous Ge_{2}Sb_{2}Te_{5} using "local" reverse Monte Carlo modeling dedicated to an angstrom-beam electron diffraction analysis. The results corroborated the existence of local structures with rocksalt crystal-like topology that were greatly distorted compared to the crystal symmetry.

View Article and Find Full Text PDF

Despite the fact that phase-change materials are widely used for data storage, no consensus exists on the unique mechanism of their ultrafast phase change and its accompanied large and rapid optical change. By using the pump-probe observation method combining a femtosecond optical laser and an x-ray free-electron laser, we substantiate experimentally that, in both GeTe and Ge_{2}Sb_{2}Te_{5} crystals, rattling motion of mainly Ge atoms takes place with keeping the off-center position just after femtosecond-optical-laser irradiation, which eventually leads to a higher symmetry or disordered state. This very initial rattling motion in the undistorted lattice can be related to instantaneous optical change due to the loss of resonant bonding that characterizes GeTe-based phase change materials.

View Article and Find Full Text PDF

Using molecular dynamics simulations we show that two distinct crystallization processes, depending on the temperature at which crystallization occurs, appear in a supercooled liquid. As a model for glass-forming materials, an Al2O3 model system, in which both the glass transition and crystallization from the supercooled liquid can be well reproduced, is employed. Simulations in the framework of an isothermal-isobaric ensemble indicate that the calculated time-temperature-transformation curve for the crystallization to γ(defect spinel)-Al2O3 exhibited a typical nose shape, as experimentally observed in various glass materials.

View Article and Find Full Text PDF

On the basis of the similarity between spinel and rocksalt structures, it is shown that some spinel oxides (e.g., MgCoO, etc) can be cathode materials for Mg rechargeable batteries around 150 °C.

View Article and Find Full Text PDF

Roles of antisite transition metals interchanging with Li atoms in electrode materials of Li transition-metal complex oxides were clarified using a newly developed direct labeling method, termed powder diffraction anomalous fine structure (P-DAFS) near the Ni K-edge. We site-selectively investigated the valence states and local structures of Ni in Li0.89Ni1.

View Article and Find Full Text PDF

The diffraction anomalous fine structure (DAFS) method that is a spectroscopic analysis combined with resonant X-ray diffraction enables the determination of the valence state and local structure of a selected element at a specific crystalline site and/or phase. This method has been improved by using a polycrystalline sample, channel-cut monochromator optics with an undulator synchrotron radiation source, an area detector and direct determination of resonant terms with a logarithmic dispersion relation. This study makes the DAFS method more convenient and saves a large amount of measurement time in comparison with the conventional DAFS method with a single crystal.

View Article and Find Full Text PDF

We synthesized freestanding bulk three-dimensional nanoporous Si using dealloying in a metallic melt, a top-down process. Using this nanoporous Si, we fabricated negative electrodes with high lithium capacity, nearing their theoretical limits, and greatly extended cycle lifetimes, considerably improving the battery performance compared with those using electrodes made from silicon nanoparticles. By operating the electrodes below the accommodation volume limit of their pores, we prolonged their cycle lifetime.

View Article and Find Full Text PDF

The continuing effort to utilize the unique properties present in a number of strongly correlated transition metal oxides for novel device applications has led to intense study of their transitional phase state behavior. Here we report on time-resolved coherent X-ray diffraction measurements on a single vanadium dioxide nanocrystal undergoing a solid-solid phase transition, using the SACLA X-ray Free Electron Laser (XFEL) facility. We observe an ultrafast transition from monoclinic to tetragonal crystal structure in a single vanadium dioxide nanocrystal.

View Article and Find Full Text PDF

Metal nanowire nonwoven cloth (MNNC) is a metal sheet that has resulted from intertwined metal nanowires 100 nm in diameter with several dozen micrometers of length. Thus, it is a new metallic material having both a flexibility of the metal sheet and a large specific surface area of the nanowires. As an application that utilizes these properties, we propose a high-cyclability electrode for Li storage batteries, in which an active material is deposited or coated on MNNC.

View Article and Find Full Text PDF

The transverse acoustic excitation modes were detected by inelastic x-ray scattering in liquid Ga in the Q range above 9 nm(-1) although liquid Ga is mostly described by a hard-sphere liquid. An ab initio molecular dynamics simulation clearly supports this finding. From the detailed analysis for the S(Q,omega) spectra with a good statistic quality, the lifetime of 0.

View Article and Find Full Text PDF

It has been reported that the structural stability is significantly deteriorated under radio-frequency-ultrasonic perturbation at relatively low temperatures, e.g., near/below the glass transition temperature T(g), even for thermally stable metallic glasses.

View Article and Find Full Text PDF