Publications by authors named "Ichirou Karahara"

To study plant organs, it is necessary to investigate the three-dimensional (3D) structures of plants. In recent years, non-destructive measurements through computed tomography (CT) have been used to understand the 3D structures of plants. In this study, we use the capitulum inflorescence as an example and focus on contact points between the receptacles and florets within the 3D capitulum inflorescence bud structure to investigate the 3D arrangement of the florets on the receptacle.

View Article and Find Full Text PDF

We have performed a lab-based hypergravity cultivation experiment using a centrifuge equipped with a lighting system and examined long-term effects of hypergravity on the development of the main axis of the Arabidopsis (Arabidopsis thaliana (L.) Heynh.) primary inflorescence, which comprises the rachis and peduncle, collectively referred to as the main stem for simplicity.

View Article and Find Full Text PDF

Studies visualizing plant tissues and organs in three-dimension (3D) using micro-computed tomography (CT) published since approximately 2015 are reviewed. In this period, the number of publications in the field of plant sciences dealing with micro-CT has increased along with the development of high-performance lab-based micro-CT systems as well as the continuous development of cutting-edge technologies at synchrotron radiation facilities. The widespread use of commercially available lab-based micro-CT systems enabling phase-contrast imaging technique, which is suitable for the visualization of biological specimens composed of light elements, appears to have facilitated these studies.

View Article and Find Full Text PDF

Land plants have two types of shoot-supporting systems, root system and rhizoid system, in vascular plants and bryophytes. However, since the evolutionary origin of the systems is different, how much they exploit common systems or distinct systems to architect their structures is largely unknown. To understand the regulatory mechanism of how bryophytes architect the rhizoid system responding to environmental factors, we have developed the methodology to visualize and quantitatively analyze the rhizoid system of the moss, Physcomitrium patens, in 3D.

View Article and Find Full Text PDF

Plant roots change their morphological traits in order to adapt themselves to different environmental conditions, resulting in the alteration of the root system architecture. To understand this mechanism, it is essential to visualize the morphology of the entire root system. To reveal effects of long-term alteration of gravity environment on root system development, we have performed an experiment in the International Space Station using Arabidopsis plants and obtained dried root systems grown in rockwool slabs.

View Article and Find Full Text PDF

Insect-induced galls are microhabitats distinct from the outer environment that support inhabitants by providing improved nutrients, defence against enemies, and other unique features. It is intriguing as to how insects reprogram and modify plant morphogenesis. Because most of the gall systems are formed on trees, it is difficult to maintain them in laboratories and to comprehend the mechanisms operative in them through experimental manipulations.

View Article and Find Full Text PDF

Plants have evolved and grown under the selection pressure of gravitational force at 1 g on Earth. In response to this selection pressure, plants have acquired gravitropism to sense gravity and change their growth direction. In addition, plants also adjust their morphogenesis in response to different gravitational forces in a phenomenon known as gravity resistance.

View Article and Find Full Text PDF

Soil salinity is an increasing threat to the productivity of glycophytic crops worldwide. The root plays vital roles under various stress conditions, including salinity, as well as has diverse functions in non-stress soil environments. In this review, we focus on the essential functions of roots such as in ion homeostasis mediated by several different membrane transporters and signaling molecules under salinity stress and describe recent advances in the impacts of quantitative trait loci (QTLs) or genetic loci (and their causal genes, if applicable) on salinity tolerance.

View Article and Find Full Text PDF

We have performed a seed-to-seed experiment in the cell biology experiment facility (CBEF) installed in the Kibo (Japanese Experiment Module) in the International Space Station. The CBEF has a 1 × g compartment on a centrifuge and a microgravity compartment, to investigate the effects of microgravity on the vegetative and reproductive growth of Arabidopsis thaliana (L.) Heynh.

View Article and Find Full Text PDF

X-ray micro-CT is one of the most useful techniques to examine 3D cellular architecture inside dry seeds. However, the examination of imbibed seeds is difficult because immersion in water causes a decline in the image quality. Here, we examined the use of ionic liquids for specimen preparation of chemically fixed imbibed seeds of Arabidopsis.

View Article and Find Full Text PDF

The prothalli of the fern Ceratopteris richardii exhibit negative gravitropism when grown in darkness. However, no sedimentable organelles or substances have been detected in the prothallial cells, suggesting that a non-sedimentable gravisensor exists. We investigated whether chloroplasts are involved in the gravisensing system of C.

View Article and Find Full Text PDF

The physiological and anatomical responses of bryophytes to altered gravity conditions will provide crucial information for estimating how plant physiological traits have evolved to adapt to significant increases in the effects of gravity in land plant history. We quantified changes in plant growth and photosynthesis in the model plant of mosses, Physcomitrella patens, grown under a hypergravity environment for 25 days or 8 weeks using a custom-built centrifuge equipped with a lighting system. This is the first study to examine the response of bryophytes to hypergravity conditions.

View Article and Find Full Text PDF

The preprophase band (PPB) is a cytokinetic apparatus that determines the site of cell division in plants. It originates as a broad band of microtubules (MTs) in G2 and narrows to demarcate the future division site during late prophase. Studies with fluorescent probes have shown that PPBs contain F-actin during early stages of their development but become actin depleted in late prophase.

View Article and Find Full Text PDF

Although the extent of aerenchyma (interconnected gas-filled space) formed in the cortex of the roots of some species can be promoted by submergence and ethylene, such roots also form a somewhat less extensive aerenchyma under well-aerated conditions. It has been unclear whether or not ethylene is also involved in promoting this constitutive aerenchyma. To confirm the potential of ethylene to stimulate aerenchyma development and test the possibility that gas regulates constitutive aerenchyma, a novel sandwich method was employed in rice roots.

View Article and Find Full Text PDF

Use of electron tomography methods improves image resolution of transmission electron microscopy especially in the z-direction, enabling determination of complicated 3D structures of organelles and cytoskeleton arrays. The increase in resolution necessitates preservation of cellular structures close to the native states with minimum artifacts. High-pressure freezing (HPF) that immobilizes molecules in the cell instantaneously has been used to avoid damages caused by convention chemical fixation.

View Article and Find Full Text PDF

The cotyledon of legume seeds is a storage organ that provides nutrients for seed germination and seedling growth. The spatial and temporal control of the degradation processes within cotyledons has not been elucidated. Calcium oxalate (CaOx) crystals, a common calcium deposit in plants, have often been reported to be present in legume seeds.

View Article and Find Full Text PDF

Elevated Na(+) levels in agricultural lands are increasingly becoming a serious threat to the world agriculture. Plants suffer osmotic and ionic stress under high salinity due to the salts accumulated at the outside of roots and those accumulated at the inside of the plant cells, respectively. Mechanisms of salinity tolerance in plants have been extensively studied and in the recent years these studies focus on the function of key enzymes and plant morphological traits.

View Article and Find Full Text PDF

The Casparian strip is commonly observed in the endodermis of roots of vascular plants and, in some cases, also in the stems. Pea stems develop the Casparian strip, and its development has been reported to be regulated by blue light. In addition, for the purpose of photobiological studies, pea stems provide a unique experimental system for other physiological studies of the development of the Casparian strip.

View Article and Find Full Text PDF

Background And Aims: The effect of environmental factors on the regulation of aerenchyma formation in rice roots has been discussed for a long time, because aerenchyma is constitutively formed under aerated conditions. To elucidate this problem, a unique method has been developed that enables sensitive detection of differences in the development of aerenchyma under two different environmental conditions. The method is tested to determine whether aerenchyma development in rice roots is affected by osmotic stress.

View Article and Find Full Text PDF

The root system is particularly affected by unfavourable conditions because it is in direct contact with the soil environment. Casparian strips, a specialised structure deposited in anticlinal walls, are characterised by the impregnation of the primary wall pores with lignin and suberin. The Casparian strips in the endo- and exodermis of vascular plant roots appear to play an important role in preventing the non-selective apoplastic bypass of salts into the stele along the apoplast under salt stress.

View Article and Find Full Text PDF

Recent studies have shown that hypergravity enhances lignification through up-regulation of the expression of lignin biosynthesis-related genes, although its hormonal signalling mechanism is unknown. The effects of hypergravity on auxin dynamics were examined using Arabidopsis plants that were transformed with the auxin reporter gene construct DR5::GUS. Hypergravity treatment at 300 g significantly increased β-glucuronidase activity in inflorescence stems of DR5::GUS plants, indicating that endogenous auxin accumulation was enhanced by hypergravity treatment.

View Article and Find Full Text PDF

To understand the regulatory mechanisms involved in tissue development by light, the kinetics of regulation of Casparian strip (CS) development in garden pea stems was studied. We found that short-term irradiation with white light delayed the development of the CS and used this delay to assess the quantitative effect of light on CS development. We examined the effect of the duration and fluence rates of white light treatment on CS development and observed a significant relationship between fluence and the delay in CS development indicating that the Bunsen-Roscoe law of reciprocity holds for this response.

View Article and Find Full Text PDF

The preprophase band (PPB) of microtubules (MTs) marks the site of the future division plane irrespective of the orientation of the equatorial plane. Because the PPB MTs disappear during prometaphase, some positional information is thought to remain in the cortical cytoplasm after the disappearance of the PPB MTs. Cytoskeletal proteins are known to be excluded from the PPB site during mitosis.

View Article and Find Full Text PDF

The preprophase band (PPB) marks the site on the plant cell cortex where the cell plate will fuse during the final stage of cytokinesis. Recent studies have shown that several cytoskeletal proteins are depleted at the PPB site, but the processes that bring about these changes are still unknown. We have investigated the membrane systems associated with the PPB regions of epidermal cells of onion cotyledons by means of serial thin sections and electron tomograms.

View Article and Find Full Text PDF