Publications by authors named "Ichijo H"

The mammalian mitogen-activated protein (MAP) kinase kinase kinase apoptosis signal-regulating kinase 1 (ASK1) is a pivotal component in cytokine- and stress-induced apoptosis. It also regulates cell differentiation and survival through p38 MAP kinase activation. Here we show that Ca2+ signalling regulates the ASK1-p38 MAP kinase cascade.

View Article and Find Full Text PDF

Objective: Monocyte chemoattractant protein 1 (MCP-1) could contribute to enhanced leukocyte recruitment and activation resulting in chronic tissue damage. However, little is known about the molecular mechanisms of cardiac MCP-1 expression. To elucidate these molecular mechanisms, angiotensin II-induced expression of MCP-1 was examined in cultured rat neonatal ventricular cardiomyocytes and fibroblasts by adenovirus gene transfer.

View Article and Find Full Text PDF

Objective: Reactive oxygen species initiate pulmonary vascular endothelial cell damage leading to an increase in endothelial permeability resulting in the production of pulmonary edema. Apoptosis signal-regulating kinase (ASK)-1 is a ubiquitously expressed mitogen-activated protein kinase kinase kinase (MAPKKK) that activates the MKK3/MKK6-p38 MAPK and the SEK1-c-Jun N-terminal kinase (JNK) signaling cascade. ASK1 has been implicated in cytokine- and stress-induced apoptosis.

View Article and Find Full Text PDF

Left ventricular remodeling that occurs after myocardial infarction (MI) and pressure overload is generally accepted as a determinant of the clinical course of heart failure. The molecular mechanism of this process, however, remains to be elucidated. Apoptosis signal-regulating kinase 1 (ASK1) is a mitogen-activated protein kinase kinase kinase that plays an important role in stress-induced apoptosis.

View Article and Find Full Text PDF

Background: Apoptosis signal-regulating kinase 1 (ASK1), recently identified as one of the mitogen-activated protein kinase kinase kinases, is activated by various extracellular stimuli and involved in a variety of cellular function. Therefore, we first examined the role of ASK1 in vascular remodeling.

Methods And Results: We used rat balloon injury model and cultured vascular smooth muscle cells (VSMCs).

View Article and Find Full Text PDF

Rho is known as an important regulator of actin microfilament formation. We were led to study it because a dynamic rearrangement of actin filaments occurs during activation of gastric acid secretion. In order to use specific probes, the rabbit gastric gland culture system was employed and the various genes were expressed using adenovirus vector.

View Article and Find Full Text PDF

In cardiac excitation-contraction coupling, Ca2+-induced Ca2+ release (CICR) from ryanodine receptors (RyRs), triggered by Ca2+ entry through the nearby L-type Ca2+ channel, induces Ca2+-dependent inactivation (CDI) of the Ca2+ channel. Aiming at elucidating the physiological role of CDI produced by CICR (CICR-dependent CDI), we investigated the contribution of the CICR-dependent CDI to action potential (AP) waveform and the amount of Ca2+-influx through Ca2+ channels during AP in rat ventricular myocytes. The elimination of the CICR-dependent CDI, by depletion of the SR Ca2+ with thapsigargin, significantly prolonged AP duration (APD).

View Article and Find Full Text PDF

Diverse stimuli initiate the activation of apoptotic signaling pathways that often causes nuclear DNA fragmentation. Here, we report a new antiapoptotic protein, a caspase-activated DNase (CAD) inhibitor that interacts with ASK1 (CIIA). CIIA, by binding to apoptosis signal-regulating kinase 1 (ASK1), inhibits oligomerization-induced ASK1 activation.

View Article and Find Full Text PDF

Multiple lines of evidence establish that angiotensin II (Ang II) induces not only hypertension but also directly contributes to cardiac diseases. Apoptosis signal-regulating kinase 1 (ASK1), one of mitogen-activated protein kinase kinase kinases, plays a key role in stress-induced cellular responses. However, nothing is known about the role of ASK1 in cardiac hypertrophy and remodeling in vivo.

View Article and Find Full Text PDF

The ubiquitin/proteasome system has been proposed to play an important role in Alzheimer's disease (AD) pathogenesis. However, the critical factor(s) modulating both amyloid-beta peptide (Abeta) neurotoxicity and ubiquitin/proteasome system in AD are not known. We report the isolation of an unusual ubiquitin-conjugating enzyme, E2-25K/Hip-2, as a mediator of Abeta toxicity.

View Article and Find Full Text PDF

Apoptosis occurs in influenza virus (IV)-infected cells. There are a number of mechanisms for the regulation of apoptosis. However, the molecular mechanism of IV infection-induced apoptosis is still controversial.

View Article and Find Full Text PDF

Voltage-dependent L-type Ca2+ channels are modulated by the binding of Ca2+ channel antagonists and agonists to the pore-forming alpha1c subunit (CaV 1.2). We recently identified Ser1115 in IIIS5-S6 linker of alpha1C subunit as a critical determinant of the action of 1,4-dihydropyridine agonists.

View Article and Find Full Text PDF

Previously, we reported that p38, which belongs to the mitogen-activated protein kinase (MAPK) superfamily, has an important role in the induction of apoptosis of cultured cerebellar granule neurons. However, the molecular mechanisms upstream of p38 activation remain unclear. Apoptosis signal-regulating kinase-1 (ASK1), a MAPK kinase kinase (MAPKKK) protein, is known to activate both c-Jun N-terminal kinase (JNK) and p38 via MAPK kinase (MKK) 4/7 and MKK3/6, respectively.

View Article and Find Full Text PDF

ADP-ribosylation factor (ARF) proteins are monomeric GTPases that are essential for membrane transport and exocytosis in a number of secretory cells. We investigated ARF6, the activation of which is insensitive to brefeldin A, to determine whether it regulates membrane traffic in gastric parietal cells. ARF6 translocated from cytosol to tubulovesicle in the presence of GTPgammaS, a potential inhibitor of acid secretion in permeabilized cells, whereas under the Mg2+-chelated condition where activity of ARF-GTPase activating protein is inhibited, ARF6 translocated to the apical secretory membrane.

View Article and Find Full Text PDF

The biological function of full-length amyloid-beta protein precursor (AbetaPP), the precursor of Abeta, is not fully understood. Multiple laboratories have reported that antibody binding to cell surface AbetaPP causes neuronal cell death. Here we examined whether induced dimerization of the cytoplasmic domain of AbetaPP (AbetaPPCD) triggers neuronal cell death.

View Article and Find Full Text PDF

Under serum-free conditions, rapamycin, an inhibitor of mammalian target of rapamycin (mTOR), induces apoptosis of cells lacking functional p53. Cells expressing wild-type p53 or p21(Cip1)arrest in G1 and remain viable. In cells lacking functional p53, rapamycin or amino acid deprivation induces rapid and sustained activation of apoptosis signal-regulating kinase 1 (ASK1), c-Jun N-terminal kinase, and elevation of phosphorylated c-Jun that results in apoptosis.

View Article and Find Full Text PDF

Apoptosis signal-regulating kinase 1 (ASK1) is a ubiquitously expressed mitogen-activated protein (MAP) kinase kinase kinase that activates the c-Jun N-terminal kinase (JNK) and p38 MAP kinase signaling cascades. Recent findings from analyses of ASK1-deficient mice have revealed that ASK1 is required for apoptosis induced by oxidative stress, TNF and endoplasmic reticulum (ER) stress. In addition, several lines of evidence have suggested that ASK1 has diverse functions in the decision of cell fate beyond its pro-apoptotic activity.

View Article and Find Full Text PDF

Exhaled nitric oxide (NO) is increased in individuals with bronchial asthma. NO may have antiinflammatory and proinflammatory effects; however, its role in bronchial asthma is unclear. In the present study, to clarify this issue we examined the effect of NO in inducing activator protein-1 (AP-1) activation in human bronchial epithelial cells (BEC) and a role of apoptosis signal-regulating kinase1 (ASK1), an upstream kinase kinase of c-Jun-NH2-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) in NO-mediated AP-1 activation.

View Article and Find Full Text PDF

The type 1 insulin-like growth factor receptor (IGF-IR) is a receptor-tyrosine kinase that plays a critical role in signaling cell survival and proliferation. IGF-IR binding to its ligand, insulin-like growth factor (IGF-I) activates phosphoinositide 3-kinase (PI3K), promotes cell proliferation by activating the mitogen-activated protein kinase (MAPK) cascade, and blocks apoptosis by inducing the phosphorylation and inhibition of proapoptotic proteins such as BAD. Apoptosis signal-regulating kinase 1 (ASK1) is a MAP kinase kinase kinase (MAPKKK) that is required for c-Jun N-terminal kinase (JNK) and p38 activation in response to Fas and tumor necrosis factor (TNF) receptor stimulation, and for oxidative stress- and TNFalpha-induced apoptosis.

View Article and Find Full Text PDF

To clarify anatomical relationships between the left and right vertical semicircular canal (SCC), we measured angles between the left and right posterior SCCs, and angles between left and right anterior SCCs. Subjects were T2 images of axial magnetic resonance imaging (MRI) in 50 patients reporting headaches. The mean angle between the left and right posterior SCC was 92.

View Article and Find Full Text PDF

We investigated intracellular signalling pathways for apoptosis induced by epigallocatechin-3-gallate (EGCG) as compared with those induced by a toxic chemical substance (etoposide, VP16) or the death receptor ligand [tumour necrosis factor (TNF)]. EGCG as well as VP16 and TNF induced activation of two apoptosis-regulating mitogen-activated protein (MAP) kinases, namely c-Jun N-terminal kinase (JNK) and p38 MAP kinase, in both human leukaemic U937 and OCI-AML1a cells. In U937 cells, the apoptosis and activation of caspases-3 and -9 induced by EGCG but not VP16 and TNF were inhibited with SB203580, a specific inhibitor of p38, while those induced by EGCG and VP16 but not TNF were inhibited with SB202190, a rather broad inhibitor of JNK and p38.

View Article and Find Full Text PDF

p38 mitogen-activated protein kinases (MAPKs), together with extracellular signal-regulated kinases (ERKs) and c-Jun N-terminal kinases (JNKs), constitute the MAPK family. Multiple intracellular signalling pathways that converge on MAPKs exist in all eukaryotic cells and play pivotal roles in a wide variety of cellular functions. p38 MAPKs and JNKs, also termed stress-activated protein kinases (SAPKs), are preferentially activated by various cytotoxic stresses and cytokines and appear to be potent regulators of stress-induced apoptosis.

View Article and Find Full Text PDF

Hepatoprotection mediated by free radical scavenging molecules such as dimethyl sulfoxide (Me(2)SO) arose the question as to whether this effect involved one or several anti-apoptotic signals. Here, using primary cultures of rat hepatocytes and in vivo thioacetamide-induced liver failure, we showed that Me(2)SO failed to prevent any cleavage of initiator caspase-8 and -9 but constantly inhibited procaspase-3 maturation and apoptosis execution, pointing to an efficient inhibition of cleaved initiator caspase activities. Evidence was recently provided that apoptosis might require both caspase and ASK1/JNK-p38 activities.

View Article and Find Full Text PDF

Oxidative stress induces JNK activation, which leads to apoptosis through mitochondria-dependent caspase activation. However, little is known about the mechanism by which JNK alters mitochondrial function. In this study, we investigated the role of phosphorylation of myeloid cell leukemia 1 (Mcl-1), an anti-apoptotic member of the Bcl-2 family, in oxidative stress-induced apoptosis.

View Article and Find Full Text PDF