Publications by authors named "Ichie Osaka"

Vaginally delivered microbicides are being developed to offer women self-initiated protection against transmission of sexually transmitted infections such as Chlamydia trachomatis. A small molecule, DS-96, rationally designed for high affinity to Escherichia coli lipid A, was previously demonstrated to bind and neutralize lipopolysaccharide (LPS) from a wide variety of Gram-negative bacteria (D. Sil et al.

View Article and Find Full Text PDF

VirF is an AraC family transcriptional activator that is required for the expression of virulence genes associated with invasion and cell-to-cell spread by Shigella flexneri, including multiple components of the type three secretion system (T3SS) machinery and effectors. We tested a small-molecule compound, SE-1 (formerly designated OSSL_051168), which we had identified as an effective inhibitor of the AraC family proteins RhaS and RhaR, for its ability to inhibit VirF. Cell-based reporter gene assays with Escherichia coli and Shigella, as well as in vitro DNA binding assays with purified VirF, demonstrated that SE-1 inhibited DNA binding and transcription activation (likely by blocking DNA binding) by VirF.

View Article and Find Full Text PDF

The conventional method for quantification of Chlamydia infection using fluorescence microscopy typically involves time- and labor-intensive manual enumeration, which is not applicable for a large-scale analysis required for an inhibitory compound screen. In this study, an alamarBlue (resazurin) assay was adopted to measure Chlamydia infection by measuring the redox capability of infected host cells in a 96-well format. The assay provided measurements comparable to those of the conventional microscopy method while drastically reducing the time required for analysis.

View Article and Find Full Text PDF

A major limitation in the identification of novel antichlamydial compounds is the paucity of effective methods for large-scale compound screening. The immunofluorescence assay is the preferred approach for accurate quantification of the intracellular growth of Chlamydia. In this study, an immunofluorescence image-based method (termed image-based automated chlamydial identification and enumeration [iBAChIE]) was customized for fully automated quantification of Chlamydia infection using the freely available open-source image analysis software program CellProfiler and the complementary data exploration software program CellProfiler Analyst.

View Article and Find Full Text PDF