The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the agent of a major global outbreak of respiratory tract disease known as Coronavirus Disease 2019 (COVID-19). SARS-CoV-2 infects mainly lungs and may cause several immune-related complications, such as lymphocytopenia and cytokine storm, which are associated with the severity of the disease and predict mortality. The mechanism by which SARS-CoV-2 infection may result in immune system dysfunction is still not fully understood.
View Article and Find Full Text PDFThe COVID-19 (Coronavirus Disease 2019), caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), severely affects mainly individuals with pre-existing comorbidities. Here our aim was to correlate the mTOR (mammalian/mechanistic Target of Rapamycin) and autophagy pathways with the disease severity. Through western blotting and RNA analysis, we found increased mTOR signaling and suppression of genes related to autophagy, lysosome, and vesicle fusion in Vero E6 cells infected with SARS-CoV-2 as well as in transcriptomic data mining of bronchoalveolar epithelial cells from severe COVID-19 patients.
View Article and Find Full Text PDFBackground: The release of neutrophil extracellular traps (NETs) is associated with inflammation, coagulopathy, and organ damage found in severe cases of COVID-19. However, the molecular mechanisms underlying the release of NETs in COVID-19 remain unclear.
Objectives: We aim to investigate the role of the Gasdermin-D (GSDMD) pathway on NETs release and the development of organ damage during COVID-19.
COVID-19 is a disease of dysfunctional immune responses, but the mechanisms triggering immunopathogenesis are not established. The functional plasticity of macrophages allows this cell type to promote pathogen elimination and inflammation or suppress inflammation and promote tissue remodeling and injury repair. During an infection, the clearance of dead and dying cells, a process named efferocytosis, can modulate the interplay between these contrasting functions.
View Article and Find Full Text PDFImmunity
September 2021
Sepsis results in elevated adenosine in circulation. Extracellular adenosine triggers immunosuppressive signaling via the A2a receptor (A2aR). Sepsis survivors develop persistent immunosuppression with increased risk of recurrent infections.
View Article and Find Full Text PDF(admirable red-belly toad) is a microendemic and critically endangered species found exclusively along 700 m of the Forqueta River, in a fragment of the Atlantic Forest of southern Brazil. One of the greatest concerns regarding the conservation of this species is the extensive use of pesticides in areas surrounding their natural habitat. In recent years, the adaptation and persistence of animal species in human-impacted environments have been associated with microbiota.
View Article and Find Full Text PDFPrimarily formed by the microbial decarboxylation of the amino acid histidine, histamine is the leading global cause of food poisoning from fish consumption worldwide. In the present work, the quality of 12 fresh and 12 frozen marketed sardines () were evaluated for histamine concentration using High-performance Liquid Chromatography with Diode-Array Detection (HPLC-DAD), while the detection and quantification of histamine-producing bacteria were performed via quantitative Polymerase Chain Reaction (qPCR), and the microbiota composition of sardines was assessed through amplification of the gene using high-throughput sequencing (HTS). According to the results obtained by HPLC-DAD, histamine concentration ranged from 226.
View Article and Find Full Text PDF