This work is dedicated to the characterization by Atomic Force Microscopy (AFM) of , bacteria having high potential in biotechnology. They were first studied first in optimal conditions in terms of culture medium and temperature. AFM revealed a more-or-less elongated morphology with typical dimensions in the micrometer range, and an organization of the outer membrane characterized by the presence of long and randomly distributed ripples, which are likely related to the organization of lipopolysaccharides (LPS).
View Article and Find Full Text PDFThe engineering of nanomaterials, because of their specific properties, is increasingly being developed for commercial purposes over the past decades, to enhance diagnosis, cosmetics properties as well as sensing efficiency. However, the understanding of their fate and thus their interactions at the cellular level with bio-organisms remains elusive. Here, we investigate the size- and charge-dependence of the damages induced by silica nanoparticles (SiO-NPs) on Gram-negative Escherichia coli bacteria.
View Article and Find Full Text PDFIn this work, we studied the interaction of two oxidized lipids, PoxnoPC and PazePC, with POPC phospholipid. Mean molecular areas obtained from (π-A) isotherms of mixed PoxnoPC-POPC and PazePC-POPC monolayers revealed different behaviors of these two oxidized lipids: the presence of PoxnoPC in the monolayers induces their expansion, mean molecular areas being higher than those expected in the case of ideal mixtures. PazePC-POPC behave on the whole ideally.
View Article and Find Full Text PDFThe present study aims at evaluating intrinsic changes in Escherichia coli (E. coli) surface over time, by Atomic Force Microscopy (AFM). For that purpose, bacteria were immobilized on mica or on mica previously functionalized by the deposition of a polyelectrolyte multilayer cushion.
View Article and Find Full Text PDF