Publications by authors named "Ibtisam E Tothill"

Lung cancer is the most common type of cancer diagnosed worldwide and is also among the most fatal. Early detection, before symptoms become evident, is fundamental for patients' survival. Therefore, several lung cancer biomarkers have been proposed to enable a prompt diagnosis, including neuron-specific enolase (NSE) and carcinoembryonic antigen (CEA).

View Article and Find Full Text PDF

In this work, two human epidermal growth factor receptors, HER-1 and HER-2, were selected as biomarkers to enable the detection of breast cancer. Therefore, two biosensors were developed using gold sensor chips coupled with amperometric detection of the enzyme label horse radish peroxidase (HRP). The biosensors/immunosensors relied on indirect sandwich enzyme-linked immunosorbent assays with monoclonal antibodies (Ab) against HER-1 and HER-2 attached to the sensors to capture the biomarkers.

View Article and Find Full Text PDF

In this work we have compared two different sensing platforms for the detection of morphine as an example of a low molecular weight target analyte. For this, molecularly imprinted polymer nanoparticles (NanoMIP), synthesized with an affinity towards morphine, were attached to an electrochemical impedance spectroscopy (EIS) and a quartz crystal microbalance (QCM) sensor. Assay design, sensors fabrication, analyte sensitivity and specificity were performed using similar methods.

View Article and Find Full Text PDF

The development of a sensor based on molecularly imprinted polymer nanoparticles (nanoMIPs) and electrochemical impedance spectroscopy (EIS) for the detection of trace levels of cocaine is described in this paper. NanoMIPs for cocaine detection, synthesized using a solid phase, were applied as the sensing element. The nanoMIPs were first characterized by Transmission Electron Microscopy (TEM) and Dynamic Light Scattering and found to be ~148.

View Article and Find Full Text PDF

In this work, a subtractive inhibition assay (SIA) based on surface plasmon resonance (SPR) for the rapid detection of Campylobacter jejuni was developed. For this, rabbit polyclonal antibody with specificity to C. jejuni was first mixed with C.

View Article and Find Full Text PDF

Histamine poisoning is the most common cause of human foodborne illness due to the consumption of fish products. An enzyme-based amperometric biosensor was developed to be used as a screening tool to detect histamine and histamine-producing bacteria (HPB) in tuna. It was developed by immobilizing histidine decarboxylase and horseradish peroxidase on the surface of screen-printed electrodes through a cross-linking procedure employing glutaraldehyde and bovine serum albumin.

View Article and Find Full Text PDF

This paper describes the development of an affinity sensor for the detection of Plasmodium falciparum parasite lactate dehydrogenase (pLDH) as one of the biomarkers used for malaria detection. The gold sensor was functionalised with anti-pLDH after cleaning the electrode surface to remove impurities (120 °C, 1 h). The sensor was then treated to block unreacted groups on the surface and minimise matrix interference, before applying it in a sandwich assay to detect pLDH in buffer samples using a dose concentration assay.

View Article and Find Full Text PDF

A sensitive and label-free surface plasmon resonance (SPR) based sensor was developed in this work for the detection of milk allergens. β-lactoglobulin (BLG) protein was used as the biomarker for cow milk detection. This is to be used directly in final rinse samples of cleaning in-place (CIP) systems of food manufacturers.

View Article and Find Full Text PDF

Food recalls due to undeclared allergens or contamination are costly to the food manufacturing industry worldwide. As the industry strives for better manufacturing efficiencies over a diverse range of food products, there is a need for the development of new analytical techniques to improve monitoring of the presence of unintended food allergens during the food manufacturing process. In particular, the monitoring of wash samples from cleaning in place systems (CIP), used in the cleaning of food processing equipment, would allow for the effective removal of allergen containing ingredients in between food batches.

View Article and Find Full Text PDF

histidine-rich protein 2 (HRP 2) was selected in this work as the biomarker for the detection and diagnosis of malaria. An enzyme-linked immunosorbent assay (ELISA) was first developed to evaluate the immunoreagent's suitability for the sensor's development. A gold-based sensor with an integrated counter and an Ag/AgCl reference electrode was first selected and characterised and then used to develop the immunosensor for HRP 2, which enables a low cost, easy to use, and sensitive biosensor for malaria diagnosis.

View Article and Find Full Text PDF

The development of molecularly imprinted polymer nanoparticles (MIP-NPs), which specifically bind biomolecules, is of great interest in the area of biosensors, sample purification, therapeutic agents and biotechnology. Polymerisation techniques such as precipitation polymerisation, solid phase synthesis and core shell surface imprinting have allowed for significant improvements to be made in developing MIP-NPs which specifically recognise proteins. However, the development of MIP-NPs for protein templates (targets) still require lengthy optimisation and characterisation using different ratios of monomers in order to control their size, binding affinity and specificity.

View Article and Find Full Text PDF

Novel molecularly imprinted polymer nanoparticles (nanoMIPs) were designed for endotoxin from Escherichia coli 0111:B4, using computational modeling. The screening process based on binding energy between endotoxin and each monomer was performed with 21 commonly used monomers, resulting in the selection of itaconic acid, methacrylic acid and acrylamide as functional monomers due to their strong binding interaction with the endotoxin template. The nanoMIPs were successfully synthesized with functional groups on the outer surface to aid in the immobilization onto sensor surface.

View Article and Find Full Text PDF

A surface plasmon resonance (SPR) sensor developed for the rapid, sensitive and specific detection of cardiac troponin T (cTnT) in serum samples is reported in this work. An extensive optimisation of assay parameters was conducted to achieve optimal detection strategy. Both direct and sandwich immunoassay formats were investigated and optimised.

View Article and Find Full Text PDF

A quartz crystal microbalance (QCM) sensor platform was used to develop an immunosensor for the detection of food pathogen Campylobacter jejuni. Rabbit polyclonal antibodies and commercially available mouse monoclonal antibodies against C. jejuni were investigated to construct direct, sandwich and gold-nanoparticles (AuNPs) amplified sandwich assays.

View Article and Find Full Text PDF

Comparative and comprehensive investigations for adenovirus recognition and detection were conducted using plastic and natural antibodies to compare three different strategies. The implementation of molecularly imprinted polymer (MIP) technology for specific and sensitive recognition of viruses with the combination of biosensors was reported. Plastic antibodies (MIPs nanoparticles) were produced for adenovirus by employing a novel solid phase synthesis method.

View Article and Find Full Text PDF

Molecularly imprinted polymers (MIPs) are artificial receptor ligands which can recognize and specifically bind to a target molecule. They are more resistant to chemical and biological damage and inactivation than antibodies. Therefore, target specific-MIP nanoparticles are aimed to develop and implemented to biosensors for the detection of biological toxic agents such as viruses, bacteria, and fungi toxins that cause many diseases and death due to the environmental contamination.

View Article and Find Full Text PDF

Detection of waterborne viruses is important to eliminate and control their harmful effect as pathogens. Hence, the use of rapid and sensitive detection technologies is critically important as they can aid in investigating outbreaks and help in developing prevention strategies. To date range of viruses can contaminate drinking water sources, causing illnesses such as diarrhoea, pneumonia and gastroenteritis which can result in death.

View Article and Find Full Text PDF

The development of an electrochemical immunosensor for the biomarker, C-reactive protein (CRP), is reported in this work. CRP has been used to assess inflammation and is also used in a multi-biomarker system as a predictive biomarker for cardiovascular disease risk. A gold-based working electrode sensor was developed, and the types of electrode printing inks and ink curing techniques were then optimized.

View Article and Find Full Text PDF

Universally, cardiovascular disease (CVD) is recognised as the prime cause of death with estimates exceeding 20 million by 2015 due to heart disease and stroke. Facts regarding the disease, its classification and diagnosis are still lacking. Hence, understanding the issues involved in its initiation, its symptoms and early detection will reduce the high risk of sudden death associated with it.

View Article and Find Full Text PDF

The accidental contamination of Salmonella in raw and processed foods is a major problem for the food industry worldwide. At present many of the currently used methods for Salmonella detection are time and labour intensive. Therefore, rapid detection is a key to the prevention and identification of problems related to health and safety.

View Article and Find Full Text PDF

In this paper, we describe a peptide library designed by computational modelling and the selection of two peptide sequences showing affinity towards the mycotoxin, ochratoxin A (OTA). A virtual library of 20 natural amino acids was used as building blocks to design a short peptide library against ochratoxin A template using the de novo design program, LeapFrog, and the dynamic modelling software, FlexiDock. Peptide sequences were ranked according to calculated binding scores in their capacity to bind to ochratoxin A.

View Article and Find Full Text PDF

Early detection of cancer is vital for the successful treatment of the disease. Hence, a rapid and sensitive diagnosis is essential before the cancer is spread out to the other body organs. Here we describe the development of a point-of-care immunosensor for the detection of the cancer biomarker (total prostate-specific antigen, tPSA) using surface plasmon resonance (SPR) and quartz crystal microbalance (QCM) sensor platforms in human serum samples.

View Article and Find Full Text PDF

An immunoassay in optimised conditions with a highly sensitive surface plasmon resonance (SPR) based biosensor was developed for the detection of the cancer biomarker carcinoembryonic antigen (CEA). Different formats of the immunoassay were initially investigated on the surface of the gold sensor chip. A self-assembled monolayer (SAM) was formed on the gold chip using 11-mercaptoundecanoic acid (MUDA), before the immobilisation of the antibodies was conducted.

View Article and Find Full Text PDF

A membrane based heterogeneous competitive enzyme-linked immunosorbent assay (ELISA) was used in this work to develop an immunosensor for the detection of a common herbicide, isoproturon. A screen-printed carbon working electrode with carbon counter and silver-silver chloride pseudo-reference electrode was utilized incorporating a membrane fixed into intimate contact with the working electrode to facilitate signal transduction. The membrane containing an immobilized isoproturon-ovalbumin conjugate was laminated onto the carbon working electrode and horseradish peroxidase (HRP) labeled polyclonal antibody was then applied for the competitive assay.

View Article and Find Full Text PDF