: Presbycusis, an age-related hearing impairment (ARHI) disease, is the most common cause for HI in adults worldwide. One of the best candidate genes for ARHI susceptibility is Cadherin 23 () which encodes stereocilia tip-links of the inner ear sensory hair cell. Although alterations in the methylation status of CpG dinucleotides across various genes were reported to be associated with HI, methylation changes in gene have not been reported previously.
View Article and Find Full Text PDFContext: Presbycusis, an age-related hearing impairment (ARHI), represents the most common sensory disability in adults. Today, the molecular mechanisms underlying presbycusis remain unclear. This is in particular due to the fact that ARHI is a multifactorial complex disorder resulting from several genomic factors interacting with lifelong cumulative effects of: disease, diet, and environment.
View Article and Find Full Text PDFHearing impairment (HI) is the most frequent sensory defect. Genetic causes are involved in two thirds of prelingual cases. Moreover, the autosomal recessive HI frequency is increased in countries where there is a high rate of consanguinity, such as in North African Mediterranean countries.
View Article and Find Full Text PDFHmga2 protein belongs to the non-histone chromosomal high-mobility group (HMG) protein family. HMG proteins have been shown to function as architectural transcription regulators, facilitating enhanceosome formation on a variety of mammalian promoters. Hmga2 are expressed at high levels in embryonic and transformed cells.
View Article and Find Full Text PDFThe adult mammalian cochlea lacks regenerative ability and the irreversible degeneration of cochlear sensory hair cells leads to permanent hearing loss. Previous data show that early postnatal cochlea harbors stem/progenitor-like cells and shows a limited regenerative/repair capacity. These properties are progressively lost later during the postnatal development.
View Article and Find Full Text PDFLoss of hair cells in the mammalian cochlea leads to permanent sensori-neural hearing loss. Hair cells degenerate and their places are taken by phalangeal scars formed by non-sensory supporting cells. Current data indicate that early postnatal post-mitotic supporting cells can proliferate and differentiate into hair cell-like cells in culture.
View Article and Find Full Text PDF