Apomorphine, a dopamine agonist, is a highly effective therapeutic to prevent intermittent off episodes in advanced Parkinson's disease. However, its short systemic half-life necessitates three injections per day. Such a frequent dosing regimen imposes a significant compliance challenge, especially given the nature of the disease.
View Article and Find Full Text PDFAlmost 50 % of the U.S. population suffers from oral infections such as periodontitis.
View Article and Find Full Text PDFSkin is one of the most immunologically active organs of the body due to the presence of diverse immune cells and its active involvement in the innate and adaptive immunity. Because of its unique location and immunological role, skin offers an excellent site for the introduction of immunomodulators to synergize with the active immune microenviroment for the desired outcome. However, delivery of immunomodulators to the skin remains a significant challenge due to the skin's barrier properties.
View Article and Find Full Text PDFSci Transl Med
February 2021
Percutaneous locoregional therapies (LRTs), such as thermal ablation, are performed to limit the progression of hepatocellular carcinoma (HCC) and offer a bridge for patients waiting for liver transplantation. However, physiological challenges related to tumor location, size, and existence of multiple lesions as well as safety concerns related to potential thermal injury to adjacent tissues may preclude the use of thermal ablation or lead to its failure. Here, we showed a successful injection of an ionic liquid into tissue under image guidance, ablation of tumors in response to the injected ionic liquid, and persistence (28 days) of coinjected chemotherapy with the ionic liquid in the ablation zone.
View Article and Find Full Text PDFThe disease chytridiomycosis, caused by the pathogenic chytrid fungus, Batrachochytrium dendrobatidis (Bd), has contributed to global amphibian declines. Bd infects the keratinized epidermal tissue in amphibians and causes hyperkeratosis and excessive skin shedding. In individuals of susceptible species, the regulatory function of the amphibian's skin is disrupted resulting in an electrolyte depletion, osmotic imbalance, and eventually death.
View Article and Find Full Text PDFMore than 70% of American adults are overweight or obese, a precondition leading to chronic diseases, including diabetes and hypertension. Among other factors, diets with high fat and carbohydrate content have been implicated in obesity. In this study, we hypothesize that the choline and geranate (CAGE) ionic liquid can reduce body weight by decreasing fat absorption through the intestine.
View Article and Find Full Text PDFAntibodies are essential to functional immunity, yet the epitopes targeted by antibody repertoires remain largely uncharacterized. To aid in characterization, we developed a generalizable strategy to predict antibody-binding epitopes within individual proteins and entire proteomes. Specifically, we selected antibody-binding peptides for 273 distinct sera out of a random library and identified the peptides using next-generation sequencing.
View Article and Find Full Text PDFCholine and geranic acid (CAGE)-based ionic liquids have been recently developed for applications in drug delivery. Understanding the microscopic structures of CAGE in the presence of water is critical for its continued use in biomedical applications as it will undoubtedly come into contact with water in physiological fluids. Water can drastically impact the physicochemical properties of the ionic liquids, including CAGE.
View Article and Find Full Text PDFJ Control Release
September 2018
Transdermal delivery of pharmaceuticals using ionic liquids and deep eutectic solvents (DES) has attracted significant interest due to the inherent tunability of the molecules and their capacity to transport large molecules across the skin. Several key properties of DESs including viscosity, miscibility and possible transport enhancement can be controlled through the choice of ions and their ratio in DES. Herein we investigate the effect of cation/anion ratio using Choline and Geranic acid (CAGE) based DES.
View Article and Find Full Text PDFACS Biomater Sci Eng
July 2018
The continued emergence of antibiotic-resistant organisms has severely depleted our arsenal of effective antimicrobials. Ionic liquids (ILs) show great promise as antibacterial agents but understanding the mechanism of attack on bacterial cells is key to ensuring that design of IL-based biocides impart maximum efficacy with minimal toxicity, while also avoiding the potential for the target organisms to become resistant. Here we report the antibacterial attributes of a set of choline and geranate (CAGE)-based ILs and identify the mechanism by which they interact with the Gram-negative cell wall of .
View Article and Find Full Text PDFWith the rise in diabetes mellitus cases worldwide and lack of patient adherence to glycemia management using injectable insulin, there is an urgent need for the development of efficient oral insulin formulations. However, the gastrointestinal tract presents a formidable barrier to oral delivery of biologics. Here we report the development of a highly effective oral insulin formulation using choline and geranate (CAGE) ionic liquid.
View Article and Find Full Text PDFNitric oxide (NO) holds great promise as a treatment for cancer hypoxia, if its concentration and localization can be precisely controlled. Here, we report a "Trojan Horse" strategy to provide the necessary spatial, temporal, and dosage control of such drug-delivery therapies at targeted tissues. Described is a unique package consisting of (1) a manganese-nitrosyl complex, which is a photoactivated NO-releasing moiety (photoNORM), plus Nd-doped upconverting nanoparticles (Nd-UCNPs) incorporated into (2) biodegradable polymer microparticles that are taken up by (3) bone-marrow derived murine macrophages.
View Article and Find Full Text PDFAdvances in the field of ionic liquids have opened new applications beyond their traditional use as solvents into other fields especially healthcare. The broad chemical space, rich with structurally diverse ions, and coupled with the flexibility to form complementary ion pairs enables task-specific optimization at the molecular level to design ionic liquids for envisioned functions. Consequently, ionic liquids now are tailored as innovative solutions to address many problems in medicine.
View Article and Find Full Text PDFNext generation sequencing (NGS) is widely applied in immunological research, but has yet to become common in antibody epitope mapping. A method utilizing a 12-mer random peptide library expressed in bacteria coupled with magnetic-based cell sorting and NGS correctly identified >75% of epitope residues on the antigens of two monoclonal antibodies (trastuzumab and bevacizumab). PepSurf, a web-based computational method designed for structural epitope mapping was utilized to compare peptides in libraries enriched for monoclonal antibody (mAb) binders to antigen surfaces (HER2 and VEGF-A).
View Article and Find Full Text PDFTransdermal delivery of peptides and other biological macromolecules is limited due to skin's inherent low permeability. Here, the authors report the use of a deep eutectic solvent, choline and geranate (CAGE), to enhance topical delivery of proteins such as bovine serum albumin (BSA, molecular weight: ≈66 kDa), ovalbumin (OVA, molecular weight: ≈45 kDa) and insulin (INS, molecular weight: 5.8 kDa).
View Article and Find Full Text PDFDisease-specific antibodies can serve as highly effective biomarkers but have been identified for only a relatively small number of autoimmune diseases. A method was developed to identify disease-specific binding motifs through integration of bacterial display peptide library screening, next-generation sequencing (NGS) and computational analysis. Antibody specificity repertoires were determined by identifying bound peptide library members for each specimen using cell sorting and performing NGS.
View Article and Find Full Text PDFObjective: To investigate blood pressure (BP) in relation to changes in body mass index (BMI) in obese children during weight loss and subsequent weight regain.
Design: A longitudinal study of obese boys and girls investigated through a 12-week weight loss intervention with follow-up investigations spanning 28 months. Results shown are from baseline; day 14, 33, and 82 during weight loss; and at months 10, 16 and 28 during follow-up.
Objective: This study assessed if lower than predicted serum leptin concentrations seen during weight loss persisted during weight regain, with possible implications for weight control.
Methods: 115 children were investigated during a 12-week weight loss program. 90 children completed the program, and 68 children entered a follow-up program spanning 28 months.
Numerous routes are being explored to lower the cost of cellulosic ethanol production and enable large-scale production. One critical area is the development of robust cofermentative organisms to convert the multiple, mixed sugars found in biomass feedstocks to ethanol at high yields and titers without the need for processing to remove inhibitors. Until such microorganisms are commercialized, the challenge is to design processes that exploit the current microorganisms' strengths.
View Article and Find Full Text PDFWhile interest in bioethanol production from lignocellulosic feedstocks is increasing, there is still relatively little pilot-plant data and operating experience available for this emerging industry. A series of batch and continuous fermentation runs were performed in a pilot-plant, some lasting up to six weeks, in which corn fiber-derived sugars were fermented to ethanol using glucose-fermenting and recombinant glucose/xylose-fermenting yeasts. However, contamination by Lactobacillus bacteria was a common occurrence during these runs.
View Article and Find Full Text PDFAppl Biochem Biotechnol
February 2005
Successful deployment of a bioethanol process depends on the integration of technologies that can be economically commercialized. Pretreatment and fermentation operations of the traditional enzymatic bioethanol-production process constitute the largest portion of the capital and operating costs. Cost reduction in these areas, through improved reactions and reduced capital, will improve the economic feasibility of a large-scale plant.
View Article and Find Full Text PDFOver the past three decades ethanol production in the United States has increased more than 10-fold, to approx 2.9 billion gal/yr (mid-2003), with ethanol production expected to reach 5 billion gal/yr by 2005. The simultaneous coproduction of 7 million t/yr of distiller's grain (DG) may potentially drive down the price of DG as a cattle feed supplement.
View Article and Find Full Text PDFInterest in bioethanol production from lignocellulosic feedstocks for use as an alternative fuel is increasing, but near-term commercialization will require a low cost feedstock. One such feedstock, corn fiber, was tested in the US Department of Energy (DOE)/National Renewable Energy Laboratory (NREL) bioethanol pilot plant for the purpose of testing integrated equipment operation and generating performance data. During initial runs in 1995, the plant was operated for two runs lasting 10 and 15 days each and utilized unit operations for feedstock handling, pretreatment by dilute sulfuric-acid hydrolysis, yeast inoculum production, and simultaneous saccharification and fermentation using a commercially available cellulase enzyme.
View Article and Find Full Text PDF