Publications by authors named "Ibrahimkutty Shyjumon"

Lanthanum and lanthanum nitride thin films were deposited by magnetron sputtering onto silicon wafers covered by natural oxide. and real-time synchrotron radiation experiments during deposition reveal that lanthanum crystallizes in the face-centred cubic bulk phase. Lanthanum nitride, however, does not form the expected NaCl structure but crystallizes in the theoretically predicted metastable wurtzite and zincblende phases, whereas post-growth nitridation results in zincblende LaN.

View Article and Find Full Text PDF

Photothermal reactions of metallic nanostructures, such as gold nanorods show appealing structural relaxations, such as bubble formation or particle modification. We have employed a pump-probe method to record the structural relaxations of a suspension of gold nanorods upon femtosecond laser excitation by pulsed X-ray scattering both with wide-angle and small-angle sensitivity. Single-pulse reactions include transient bubble formation at 20 J m and irreversible nanorod reshaping at 30 J m.

View Article and Find Full Text PDF

The kinetics of phase transitions during formation of small-scale systems are essential for many applications. However, their experimental observation remains challenging, making it difficult to elucidate the underlying fundamental mechanisms. Here, we combine in situ and real-time synchrotron X-ray diffraction (XRD) and X-ray reflectivity (XRR) experiments with substrate curvature measurements during deposition of nanoscale Mo and MoSi films on amorphous Si (a-Si).

View Article and Find Full Text PDF

Pulsed laser ablation in liquids (PLAL) is a multiscale process, involving multiple mutually interacting phenomena. In order to synthesize nanoparticles with well-defined properties it is important to understand the dynamics of the underlying structure evolution. We use visible-light stroboscopic imaging and X-ray radiography to investigate the dynamics occurring during PLAL of silver and gold on a macroscopic scale, whilst X-ray small angle scattering is utilized to deepen the understanding on particle genesis.

View Article and Find Full Text PDF

Pulsed-laser assisted nanoparticle synthesis in liquids (PLAL) is a versatile tool for nanoparticle synthesis. However, fundamental aspects of structure formation during PLAL are presently poorly understood. We analyse the spatio-temporal kinetics during PLAL by means of fast X-ray radiography (XR) and scanning small-angle X-ray scattering (SAXS), which permits us to probe the process on length scales from nanometers to millimeters with microsecond temporal resolution.

View Article and Find Full Text PDF

A portable ultrahigh-vacuum system optimized for in situ variable-temperature X-ray scattering and spectroscopy experiments at synchrotron radiation beamlines was constructed and brought into operation at the synchrotron radiation facility ANKA of the Karlsruhe Institute of Technology, Germany. Here the main features of the new instrument are described and its capabilities demonstrated. The surface morphology, structure and stoichiometry of EuSi2 nano-islands are determined by in situ grazing-incidence small-angle X-ray scattering and X-ray absorption spectroscopy.

View Article and Find Full Text PDF

The formation of nanoparticles within the laser-induced cavitation bubble is studied in situ using small angle X-ray scattering with high spatiotemporal resolution. Directly after laser ablation, two different particle fractions consisting of compact primary particles of 8-10 nm size and agglomerates of 40-60 nm size are formed. The abundance of these species is strongly influenced by the dynamics of the oscillating cavitation bubble.

View Article and Find Full Text PDF

A high-repetition-rate pump-probe experiment is presented, based on the asynchronous sampling approach. The low-α mode at the synchrotron ANKA can be used for a time resolution down to the picosecond limit for the time-domain sampling of the coherent THz emission as well as for hard X-ray pump-probe experiments, which probe structural dynamics in the condensed phase. It is shown that a synchronization of better than 1 ps is achieved, and examples of phonon dynamics of semiconductors are presented.

View Article and Find Full Text PDF

Protein-coated gold nanoparticles in suspension are excited by intense laser pulses to mimic the light-induced effect on biomolecules that occur in photothermal laser therapy with nanoparticles as photosensitizer. Ultrafast X-ray scattering employed to access the nanoscale structural modifications of the protein-nanoparticle hybrid reveals that the protein shell is expelled as a whole without denaturation at a laser fluence that coincides with the bubble formation threshold. In this ultrafast heating mediated by the nanoparticles, time-resolved scattering data show that proteins are not denatured in terms of secondary structure even at much higher temperatures than the static thermal denaturation temperature, probably because time is too short for the proteins to unfold and the temperature stimulus has vanished before this motion sets in.

View Article and Find Full Text PDF

A magnetron source of silver clusters captured by an argon flow with the quadrupole mass filter is used for the analysis of charged clusters after an orifice of the magnetron chamber, and the size distribution function follows from the analysis of clusters deposited on a silicon substrate by an atomic force microscope. Cluster charge near an orifice results from attachment of ions of a secondary plasma that is a tail of a magnetron plasma, and the cluster charge is mostly positive. The character of passage of a buffer gas flow with metal clusters through an orifice is studied both theoretically and experimentally.

View Article and Find Full Text PDF