Publications by authors named "Ibrahim Senturk"

This study introduces a machine learning (ML) approach to diagnosing carotid artery diseases, including stenosis, aneurysm, and dissection, by leveraging craniocervical computed tomography angiography (CTA) data. A meticulously curated, balanced dataset of 122 patient cases was used, ensuring reproducibility and data quality, and this is publicly accessible at (insert dataset location). The proposed method integrates a super learner model which combines adaptive boosting, gradient boosting, and random forests algorithms, achieving an accuracy of 90%.

View Article and Find Full Text PDF