Multifunctional membrane technology has gained tremendous attention in wastewater treatment, including oil/water separation and photocatalytic activity. In the present study, a multifunctional composite nanofiber membrane is capable of removing dyes and separating oil from wastewater, as well as having antibacterial activity. The composite nanofiber membrane is composed of cellulose acetate (CA) filled with zinc oxide nanoparticles (ZnO NPs) in a polymer matrix and dipped into a solution of titanium dioxide nanoparticles (TiO NPs).
View Article and Find Full Text PDFThe biosynthesis of silver nanoparticles (Ag NPs) could play a significant role in the development of commercial antimicrobials. Herein, the biosynthesis of Ag NPs was studied using the edible mushroom and following its formation, spectrophotometry was used to detect the best mushroom content, pH, temperature, and silver concentration. After that, the morphology was described via transmission electron microscopy (TEM), and nanoscale-size particles were found ranging from 11 to 13 nm.
View Article and Find Full Text PDFNatural chitosan-based films (CS) were fabricated by changing ingredient corporations between gold nanoparticles (AuNPs), lithium oxide (LiO), and graphene oxide (GO). A Series of films with different components were obtained. The structural examination is executed by XRD, FTIR, and EDX to analyze crystal structure, chemical bonding, and chemical contents, respectively.
View Article and Find Full Text PDFDue to their thermal stability characteristics, polymer/composite materials have typically been employed as corrosion inhibitors in a variety of industries, including the maritime, oil, and engineering sectors. Herein, protective films based on binary ZnO-NiO@polyaniline (ZnNiO@PANE) nanocomposite were intended with a respectable yield. The produced nanocomposite was described using a variety of spectroscopic characterization methods, including dynamic light scattering (DLS), ultraviolet-visible spectroscopy (UV-Vis), Fourier-transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS) approaches, in addition to other physicochemical methods, including X-ray powder diffraction (XRD), transmission Electron Microscopy (TEM), field emission scanning electron microscopy (FESEM), and selected area electron diffraction (SAED).
View Article and Find Full Text PDFIn this work, the preparation, characterization, and evaluation of a novel nanocomposite using polyaniline (PANi) functionalized bi-metal oxide ZnO-TiO (ZnTiO@PANi) as shielding film for carbon steel (CS)-alloy in acidic chloride solution at 298 K was studied. Different spectroscopic characterization techniques, such as UV-visible spectroscopy, dynamic light scattering (DLS), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectroscopy (FTIR) approaches, as well as other physicochemical methods, such as X-ray diffraction (XRD), high-resolution transmission electron microscopy (HR-TEM), and field emission scanning electron microscope (FESEM), were used to describe the produced nanocomposites. The significance of these films lies in the ZnO-TiO nanoparticle's functionalization by polyaniline, a material with high conductivity and electrochemical stability in acidic solutions.
View Article and Find Full Text PDFIn this work, novel phosphate materials based on bimetallic character (Fe and Ni) were introduced by different chemical fabrication methods, the reflux method (FeNiP-R) and the sol-gel technique (FeNiP-S), and evaluated as non-precious electrodes for methanol electrooxidation in KOH electrolytes. The designed FeNiP-R and FeNiP-S samples were investigated using different characterization techniques, namely TEM, SEM, XPS, BET, DLS, and FT-IR, to describe the impact of the fabrication technique on the chemistry, morphology, and surface area. The characterization techniques indicate the successful fabrication of nanoscale-sized particles with higher agglomeration by the sol-gel technique compared with the reflux strategy.
View Article and Find Full Text PDFA novel drug delivery system based on carboxymethyl cellulose containing copper oxide at melamine and zinc oxide at melamine framework (CMC-Cu-MEL and CMC-Zn-MEL) was prepared by the hydrothermal route. Synthesized nanocomposites were characterized by FTIR, SEM, and Raman spectroscopy. In addition, transmission electron microscopy (TEM) and selected area electron diffraction (SAED) images were applied to confirm the particle size and diffraction pattern of the prepared nanocomposites.
View Article and Find Full Text PDFThis work investigates an electrochemical impedance analysis based on synthesized TiO nanofibers (NFs) photoanodes, which were fabricated via electrospinning and calcination. The investigated photoanode substrate NFs were studied in terms of physicochemical tools to investigate their morphological character, crystallinity, and chemical contents via scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD) analyses. As a result, the studied photoanode substrate NFs were applied to fabricate dye-sensitized solar cells (DSCs), and the electrochemical impedance analysis (EIS) was studied in terms of equivalent circuit fitting and impacts of N-doping, the latter of which was approved via XPS analysis.
View Article and Find Full Text PDFCorrosion is considered to be the most severe problem facing alloys and metals, one that causes potentially dangerous industrial issues such as the deterioration of buildings and machinery, and corrosion in factory tanks and pipelines in petroleum refineries, leading to limited lifetime and weak efficacy of such systems. In this work, novel CeO-nanoparticle-loaded carboxymethyl cellulose (CMC) was successfully prepared by using a simple method. The structural configuration of the prepared CeO-nanoparticle-loaded CMC was investigated by FE-SEM/EDX, TEM, FT-IR, and thermal analyses.
View Article and Find Full Text PDFAn eco-friendly and a facile route successfully prepared novel cerium oxide nanoparticles functionalized by gelatin. The introduced CeO@gelatin was investigated in terms of FE-SEM, EDX, TEM, chemical mapping, FT-IR, and (TGA) thermal analyses. These characterization tools indicate the successful synthesis of a material having CeO and gelatin as a composite material.
View Article and Find Full Text PDFIn this study, the surface-initiated atom transfer radical polymerization (SI-ATRP) technique and electroless deposition of silver (Ag) were used to prepare a novel multi-functional cotton (Cotton-Ag), possessing both conductive and antibacterial behaviors. It was found that the optimal electroless deposition time was 20 min for a weight gain of 40.4%.
View Article and Find Full Text PDFA novel super-hydrophobic cotton material was fabricated via the grafting of PGMA polymer brush and the subsequent immobilization of ZnO nanoparticles and octyltriethoxysilane (OTES). The modified cotton showed a high water contact angle (WCA) of above 151° for all the water droplet with the pH ranging from 1 to 14, and was stable (WCA > 150°) in ammonia or acetic anhydride solutions. In addition, the tensile strength of the modified cotton was 2.
View Article and Find Full Text PDFIt is a big challenge to develop membrane fouling-resistant materials for long-term water filtration applications in order to reduce the operating cost. Herein, for the first time, we have proposed the utilization of lactate salts-based polyurea additives as surface modifiers (SMs) to endow anti-microbial and anti-protein activities which increase the life of poly (vinylidene fluoride) (PVDF) membrane filters in terms of attaining anti-fouling properties for prolonged and stable water flux in water treatment. Membrane fouling was examined by taking into account the important influencing factors such as surface hydrophilicity and functional lactate groups present on the surface.
View Article and Find Full Text PDFIn the present work, Cu-doped nickel ferrite (CuNiFeO) nanoparticles (CuNFNPs) were chemically fabricated by adding citric acid as a capping agent followed by combustion and calcination for acetaldehyde oxidation reaction (AOR) in KOH electrolytes. The as-prepared CuNFNPs were studied in terms of Fourier-transform infrared spectroscopy (FT-IR), Transmission electron microscopy (TEM), Field emission scanning electron microscope (FE-SEM), Energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD) and Brunauer-Emmett-Teller (BET) specific surface area analyses. The morphology of CuNFNPs has sponges-structure containing irregular pores.
View Article and Find Full Text PDFIn the present work, magnesium (Mg) AZ31 alloy was coated with a multifunctional membrane layer composed of ZnO nanoparticles (NPs) embedded in a poly(lactic acid) (PLA) matrix. We aimed to produce a stable coating that would be used to control the degradation rate of the Mg alloy and promote a local antibacterial activity. ZnO NPs were dispersed at 5 and 10 wt % in a PLA solution and dip-coated onto the AZ31 substrate.
View Article and Find Full Text PDFCapacitive deionization, as a second generation electrosorption technique to obtain water, is one of the most promising water desalination technologies. Yet; in order to achieve high CDI performance, a well-designed structure of the electrode materials is needed, and is in high demand. Here, a novel composite nitrogen-TiO/ZrO nanofibers incorporated activated carbon (NACTZ) is synthesized for the first time with enhanced desalination efficiency as well as disinfection performance towards brackish water.
View Article and Find Full Text PDFIn this work, Co/Cr nanoparticles-decorated carbon nanofibers were studied as a platinum-free catalyst for electrooxidation of ethanol in the alkaline medium. The investigated nano composites were prepared by simple, high yield and effective technique; electrospinning of cobalt acetate, chromium acetate and polyvinyl alcohol as a polymer precursor at 20 kV followed by calcination under inert atmosphere at 900 °C for 2 h. The suitable physicochemical characterizations such as XRD, SEM, TEM, TEM mapping, Line TEM-EDX and FE-SEM indicated the formation of pure CoCr nanoparticles allocated in/on carbon nanofibers.
View Article and Find Full Text PDFChemical doping is a widely-used strategy to improve the performance of TiO for the dye-sensitized solar cells (DSCs). However, the effect of two efficient dopants has been rarely investigated. We present the synthesis of GO@SnO/TiO nanofibers (NFs) by a facile method using electrospinning and hydrothermal processes.
View Article and Find Full Text PDFDue to the good stability and convenient optical properties, TiO2 nanostructures still the prominent photoanode materials in the Dye Sensitized Solar Cells (DSCs). However, the well-known low bandgap energy and weak adsorption affinity for the dye distinctly constrain the wide application. This work discusses the impact of Zr-doping and nanofibrous morphology on the performance and physicochemical properties of TiO2.
View Article and Find Full Text PDFBeni Suef Univ J Basic Appl Sci
June 2015
Schiff bases and their complexes are versatile compounds synthesized from the condensation of an amino compound with carbonyl compounds and widely used for industrial purposes and also exhibit a broad range of biological activities including antifungal, antibacterial, antimalarial, antiproliferative, anti-inflammatory, antiviral, and antipyretic properties. Many Schiff base complexes show excellent catalytic activity in various reactions and in the presence of moisture. Over the past few years, there have been many reports on their applications in homogeneous and heterogeneous catalysis.
View Article and Find Full Text PDF