The health and demographic surveillance system on Rusinga Island, Western Kenya, was initiated in 2012 to facilitate a malaria intervention trial: the SolarMal project. The project aims to eliminate malaria from Rusinga Island using the nationwide adopted strategy for malaria control (insecticide-treated bed nets and case management) augmented with mass trapping of anopheline mosquitoes. The main purpose of the health and demographic surveillance is to measure the effectiveness of the trial on clinical malaria incidence, and to monitor demographic, environmental and malaria-related data variables.
View Article and Find Full Text PDFHIV is still a major health problem in developing countries. Even though high HIV-risk-taking behaviors have been reported in African fishing villages, local distribution patterns of HIV infection in the communities surrounding these villages have not been thoroughly analyzed. The objective of this study was to investigate the geographical distribution patterns of HIV infection in communities surrounding African fishing villages.
View Article and Find Full Text PDFBackground: Health in low and middle income countries is on one hand characterized by a high burden associated with preventable communicable diseases and on the other hand considered to be under-documented due to improper basic health and demographic record-keeping. health and demographic surveillance systems (HDSSs) have provided researchers, policy makers and governments with data about local population dynamics and health related information. In order for an HDSS to deliver high quality data, effective organization of data collection and management are vital.
View Article and Find Full Text PDFBackground: A strategy to combat infectious diseases, including neglected tropical diseases (NTDs), will depend on the development of reliable epidemiological surveillance methods. To establish a simple and practical seroprevalence detection system, we developed a microsphere-based multiplex immunoassay system and evaluated utility using samples obtained in Kenya.
Methods: We developed a microsphere-based immuno-assay system to simultaneously measure the individual levels of plasma antibody (IgG) against 8 antigens derived from 6 pathogens: Entamoeba histolytica (C-IgL), Leishmania donovani (KRP42), Toxoplasma gondii (SAG1), Wuchereria bancrofti (SXP1), HIV (gag, gp120 and gp41), and Vibrio cholerae (cholera toxin).
Background: Increasing the distribution and use of insecticide-treated nets (ITNs) in Sub-Saharan Africa has made controlling malaria with ITNs more practical. We evaluated community effects induced by ITNs, specifically long-lasting insecticidal nets (LLINs), under ordinary conditions in an endemic malaria area of Western Kenya.
Methods: Using the database from Mbita Health and Demographic Surveillance System (HDSS), children younger than 5 years old were assessed over four survey periods.
Background: The Health and Demographic Surveillance System (HDSS) is a longitudinal data collection process that systematically and continuously monitors population dynamics for a specified population in a geographically defined area that lacks an effective system for registering demographic information and vital events.
Methods: HDSS programs have been run in 2 regions in Kenya: in Mbita district in Nyanza province and Kwale district in Coast Province. The 2 areas have different disease burdens and cultures.
Background: Capacity strengthening of rural communities, and the various actors that support them, is needed to enable them to lead their own malaria control programmes. Here the existing capacity of a rural community in western Kenya was evaluated in preparation for a larger intervention.
Methods: Focus group discussions and semi-structured individual interviews were carried out in 1,451 households to determine (1) demographics of respondent and household; (2) socio-economic status of the household; (3) knowledge and beliefs about malaria (symptoms, prevention methods, mosquito life cycle); (4) typical practices used for malaria prevention; (5) the treatment-seeking behaviour and household expenditure for malaria treatment; and (6) the willingness to prepare and implement community-based vector control.
Background: Integrated vector management (IVM) for malaria control requires ecological skills that are very scarce and rarely applied in Africa today. Partnerships between communities and academic ecologists can address this capacity deficit, modernize the evidence base for such approaches and enable future scale up.
Methods: Community-based IVM programmes were initiated in two contrasting settings.
Current malaria-control strategies emphasise domestic protection against adult mosquitoes with insecticides, and improved access to medical services. Malaria prevention by killing adult mosquitoes is generally favoured because moderately reducing their longevity can radically suppress community-level transmission. By comparison, controlling larvae has a less dramatic effect at any given level of coverage and is often more difficult to implement.
View Article and Find Full Text PDF