Publications by authors named "Ibrahim Kadura"

Chinese hamster ovary (CHO) cells have been one of the most widely used host cells for the manufacture of therapeutic recombinant proteins. An effective and efficient clinical cell line development process, which could quickly identify those rare, high-producing cell lines among a large population of low and non-productive cells, is of considerable interest to speed up biological drug development. In the glutamine synthetase (GS)-CHO expression system, selection of top-producing cell lines is based on controlling the balance between the expression level of GS and the concentration of its specific inhibitor, l-methionine sulfoximine (MSX).

View Article and Find Full Text PDF

Clonally derived recombinant cell lines are highly desired to achieve consistent production of recombinant biotherapeutics. Despite repeated rounds of cloning by limiting dilution or single cell cloning, the resulting cell lines have often been observed to diverge, becoming a heterogeneous population and losing productivity over long-term sub-culturing. To understand the underlying molecular mechanisms, we developed quantitative polymerase chain reaction (qPCR) assays for the analysis of transgene copy number distribution in single recombinant cells isolated from Chinese hamster ovary (CHO) cell lines.

View Article and Find Full Text PDF

Although Chinese hamster ovary (CHO) cells, with their unique characteristics, have become a major workhorse for the manufacture of therapeutic recombinant proteins, one of the major challenges in CHO cell line generation (CLG) is how to efficiently identify those rare, high-producing clones among a large population of low- and non-productive clones. It is not unusual that several hundred individual clones need to be screened for the identification of a commercial clonal cell line with acceptable productivity and growth profile making the cell line appropriate for commercial application. This inefficiency makes the process of CLG both time consuming and laborious.

View Article and Find Full Text PDF

Genotoxic stress causes a variety of cellular and molecular responses in mammalian cells, including cell cycle arrest, DNA repair, and apoptosis. These responses result from the interplay between the genotoxic events themselves, and the biological context in which they occur. To better understand this interplay, we investigated cytotoxicty, mutagenesis, cell cycle profile, and global gene expression in the human TK6 lymphoblastoid cell line exposed to six genotoxicants.

View Article and Find Full Text PDF

Exposure to DNA-damaging agents can elicit a variety of stress-related responses that may alter the gene expression of numerous biological pathways. We used Affymetrix microarrays to detect gene expression changes in mouse lymphoma (L5178Y) and human lymphoblastoid (TK6) cells in response to methyl methanesulfonate (MMS; a prototypical alkylating agent) and bleomycin (a prototypical oxidative mutagen). Cells were treated for 4 hr, and RNA was isolated either at the end of the treatment or after a 20-hr recovery period.

View Article and Find Full Text PDF

TaqMAMA combines the quantitative strengths of TaqMan with the allele-specific PCR of MAMA. In this article we develop TaqMAMA as a technique for screening human DNA samples for known genetic polymorphisms. In the first set of experiments, plasmids that model all types of genetic polymorphisms were used to understand the relationship between TaqMAMA primer/template mismatches and their strength of allelic discrimination.

View Article and Find Full Text PDF