Traditional bioactive glass powders are typically composed of irregular particles that can be packed into dense configurations presenting low interconnectivity, which can limit bone ingrowth. The use of novel biocomposite sphere formulations comprising bioactive factors as bone fillers are most advantageous, as it simultaneously allows for packing the particles in a 3-dimensional manner to achieve an adequate interconnected porosity, enhanced biological performance, and ultimately a superior new bone formation. In this work, we develop and characterize novel biocomposite macrospheres of Sr-bioactive glass using sodium alginate, polylactic acid (PLA), and chitosan (CH) as encapsulating materials for finding applications as bone fillers.
View Article and Find Full Text PDFPurpose: The aim of this study was to evaluate the clinical outcome at 5-year follow-up of a one-step procedure combining anterior cruciate ligament (ACL) reconstruction and partial meniscus replacement using a polyurethane scaffold for the treatment of symptomatic patients with previously failed ACL reconstruction and partial medial meniscectomy. Moreover, the implanted scaffolds have been evaluated by MRI protocol in terms of morphology, volume, and signal intensity.
Methods: Twenty patients with symptomatic knee laxity after failed ACL reconstruction and partial medial meniscectomy underwent ACL revision combined with polyurethane-based meniscal scaffold implant.
Rheumatoid arthritis (RA) is an autoimmune and chronic inflammatory disorder that mostly affects the synovial joints and can promote both cartilage and bone tissue destruction. Several conservative treatments are available to relieve pain and control the inflammation; however, traditional drugs administration are not fully effective and present severe undesired side effects. Hydrogels are a very attractive platform as a drug delivery system to guarantee these handicaps are reduced, and the therapeutic effect from the drugs is maximized.
View Article and Find Full Text PDFJ Mater Sci Mater Med
March 2020
Bone tissue has an astonishing self-healing capacity yet only for non-critical size defects (<6 mm) and clinical intervention is needed for critical-size defects and beyond that along with non-union bone fractures and bone defects larger than critical size represent a major healthcare problem. Autografts are, still, being used as preferred to treat large bone defects. Mostly, due to the presence of living differentiated and progenitor cells, its osteogenic, osteoinductive and osteoconductive properties that allow osteogenesis, vascularization, and provide structural support.
View Article and Find Full Text PDFThe meniscus has critical functions in the knee joint kinematics and homeostasis. Injuries of the meniscus are frequent, and the lack of a functional meniscus between the femur and tibial plateau can cause articular cartilage degeneration leading to osteoarthritis development and progression. Regeneration of meniscus tissue has outstanding challenges to be addressed.
View Article and Find Full Text PDFPurpose Of Review: Overview the outcomes of the latest use of platelet-rich plasma (PRP) for the treatment of knee lesions in the clinics and discuss the challenges and limitations.
Recent Findings: Recent clinical studies mainly indicate there may be benefit of PRP usage for the treatment of knee lesions. As an autologous source of bioactive components, PRP has been shown to be typically safe, free of major adverse outcomes.
Clinical management of meniscal injuries has changed radically in recent years. We have moved from the model of systematic tissue removal (meniscectomy) to understanding the need to preserve the tissue.Based on the increased knowledge of the basic science of meniscal functions and their role in joint homeostasis, meniscus preservation and/or repair, whenever indicated and possible, are currently the guidelines for management.
View Article and Find Full Text PDFThe menisci have crucial roles in the knee, chondroprotection being the primary. Meniscus repair or substitution is favored in the clinical management of the meniscus lesions with given indications. The outstanding challenges with the meniscal scaffolds include the required biomechanical behavior and features.
View Article and Find Full Text PDFOsteochondral (OC) regeneration faces several limitations in orthopedic surgery, owing to the complexity of the OC tissue that simultaneously entails the restoration of articular cartilage and subchondral bone diseases. In this study, novel biofunctional hierarchical scaffolds composed of a horseradish peroxidase (HRP)-cross-linked silk fibroin (SF) cartilage-like layer (HRP-SF layer) fully integrated into a HRP-SF/ZnSr-doped β-tricalcium phosphate (β-TCP) subchondral bone-like layer (HRP-SF/dTCP layer) were proposed as a promising strategy for OC tissue regeneration. For comparative purposes, a similar bilayered structure produced with no ion incorporation (HRP-SF/TCP layer) was used.
View Article and Find Full Text PDFBackground: Cell behavior is the key to tissue regeneration. Given the fact that most of the cells used in tissue engineering are anchorage-dependent, their behavior including adhesion, growth, migration, matrix synthesis, and differentiation is related to the design of the scaffolds. Thus, characterization of the scaffolds is highly required.
View Article and Find Full Text PDFOrthopaedic disorders are very frequent, globally found and often partially unresolved despite the substantial advances in science and medicine. Their surgical intervention is multifarious and the most favourable treatment is chosen by the orthopaedic surgeon on a case-by-case basis depending on a number of factors related with the patient and the lesion. Numerous regenerative tissue engineering strategies have been developed and studied extensively in laboratory through in vitro experiments and preclinical in vivo trials with various established animal models, while a small proportion of them reached the operating room.
View Article and Find Full Text PDFUnlabelled: Osteochondral lesions remain as a clinical challenge despite the advances in orthopedic regenerative strategies. Biologics, in particular, platelet-rich plasma, has been applied for the reparative and regenerative effect in many tissues, and osteochondral tissue is not an exception. Platelet-rich plasma is an autologous concentrate prepared from the collected blood; thus, this safe application is free of immune response or risk of transmission of disease.
View Article and Find Full Text PDFThe management and treatment of cartilage lesions, osteochondral defects, and osteoarthritis remain a challenge in orthopedics. Moreover, these entities have different behaviors in different joints, such as the knee and the ankle, which have inherent differences in function, biology, and biomechanics. There has been a huge development on the conservative treatment (new technologies including orthobiologics) as well as on the surgical approach.
View Article and Find Full Text PDFQuantitative assessment of micro-structure of materials is of key importance in many fields including tissue engineering, biology, and dentistry. Micro-computed tomography (µ-CT) is an intensively used non-destructive technique. However, the acquisition parameters such as pixel size and rotation step may have significant effects on the obtained results.
View Article and Find Full Text PDFThe knee menisci have important roles in the knee joint. Complete healing of the meniscus remains a challenge in the clinics. Cellularity is one of the most important biological parameters that must be taken into account in regenerative strategies.
View Article and Find Full Text PDFThe ability of zebrafish to fully regenerate its caudal fin has been explored to better understand the mechanisms underlying de novo bone formation and to develop screening methods towards the discovery of compounds with therapeutic potential. Quantifying caudal fin regeneration largely depends on successfully measuring new tissue formation through methods that require optimization and standardization. Here, we present an improved methodology to characterize and analyse overall caudal fin and bone regeneration in adult zebrafish.
View Article and Find Full Text PDFIn this study, three-dimensional (3D) porous scaffolds were developed for the repair of articular cartilage defects. Novel collagen/polylactide (PLA), chitosan/PLA, and collagen/chitosan/PLA hybrid scaffolds were fabricated by combining freeze-dried natural components and synthetic PLA mesh, where the 3D PLA mesh gives mechanical strength, and the natural polymers, collagen and/or chitosan, mimic the natural cartilage tissue environment of chondrocytes. In total, eight scaffold types were studied: four hybrid structures containing collagen and/or chitosan with PLA, and four parallel plain scaffolds with only collagen and/or chitosan.
View Article and Find Full Text PDF