Cell type identification is an important task for single-cell RNA-sequencing (scRNA-seq) data analysis. Many prediction methods have recently been proposed, but the predictive accuracy of difficult cell type identification tasks is still low. In this work, we proposed a novel Gaussian noise augmentation-based scRNA-seq contrastive learning method (GsRCL) to learn a type of discriminative feature representations for cell type identification tasks.
View Article and Find Full Text PDF