Publications by authors named "Ibrahim Alper Basar"

Hydrothermal liquefaction (HTL) is a promising method for municipal sludge valorization through waste minimization and biofuel production. The process wastewater, HTL aqueous, presents a significant challenge for scale-up due to recalcitrant compounds. In this study, granular activated carbon (GAC) was used to remove potential inhibitors from HTL aqueous through adsorption to enhance aerobic and anaerobic biological treatment.

View Article and Find Full Text PDF

Hydrothermal liquefaction (HTL) aqueous phases derived from mixed sludge and digested sludge of two wastewater treatment plants (WWTP) were characterized considering variations in primary-secondary sludge ratios, an aspect previously overlooked in the literature. Mixed sludge was obtained by mixing primary and secondary sludge to simulate high primary sludge, average, and high secondary sludge cases. Aerobic and mesophilic/thermophilic anaerobic biodegradability tests were conducted.

View Article and Find Full Text PDF

Biopolymer blends have attracted considerable attention in industrial applications due to their notable mechanical properties and biodegradability. This work delves into the innovative combination of butadiene-acrylonitrile (referred to as NBR) with a pectin-based biopolymer (NGP) at a 90:10 mass ratio through a detailed analysis employing mechanical characterization, Fourier transform infrared (FTIR) analysis, thermogravimetric analysis (TGA), and morphology studies using SEM. Additionally, biopolymer's biodegradability under aerobic and anaerobic conditions is tested.

View Article and Find Full Text PDF

Aerobic treatment, mesophilic anaerobic digestion, thermophilic anaerobic digestion, and dark fermentation were evaluated for on-site biological treatment of municipal sludge derived HTL aqueous. For all four described batch test scenarios, municipal sludge-derived HTL aqueous samples obtained under 290-360 °C and 0-30 min retention time were used. In the aerobic respirometric tests, HTL aqueous samples resulted in a five-day biochemical oxygen demand range of 40.

View Article and Find Full Text PDF

Biomaterials are increasingly being designed and adapted to a wide range of structural applications, owing to their superior mechanical property-to-weight ratios, low cost, biodegradability, and CO capture. Bamboo, specifically, has an interesting anatomy with long tube-like vessels present in its microstructure, which can be exploited to improve its mechanical properties for structural applications. By filling these vessels with a resin, e.

View Article and Find Full Text PDF

This study investigated the effect of biochar and wood ash amendment on the anaerobic digestion of hydrothermally pretreated lignocellulosic biomass. Hydrothermal pretreatment was performed on switchgrass at 200, 250, and 300 °C with 0, 30, and 60 min of retention times. The pretreatment method was optimized using the response surface method for enhanced methane production.

View Article and Find Full Text PDF

Lignocellulosic energy crops are promising feedstocks for producing renewable fuels, such as methane, that can replace diminishing fossil fuels. However, there is a major handicap in using lignocellulosic sources to produce biofuels, which is their low biodegradability. In this study, the application and the optimization of a lignocellulose pretreatment process, named alkaline hydrogen peroxide, was investigated for the enhancement of methane production from the energy crop switchgrass.

View Article and Find Full Text PDF

Additional options for the sustainable treatment of municipal sludge are required due to the significant amounts of sludge, high levels of nutrients (e.g., C, N, and P), and trace constituents it contains.

View Article and Find Full Text PDF