Polyp detection is a challenging task in the diagnosis of Colorectal Cancer (CRC), and it demands clinical expertise due to the diverse nature of polyps. The recent years have witnessed the development of automated polyp detection systems to assist the experts in early diagnosis, considerably reducing the time consumption and diagnostic errors. In automated CRC diagnosis, polyp segmentation is an important step which is carried out with deep learning segmentation models.
View Article and Find Full Text PDFScoliosis is a medical condition in which a person's spine has an abnormal curvature and Cobb angle is a measurement used to evaluate the severity of a spinal curvature. Presently, automatic Existing Cobb angle measurement techniques require huge dataset, time-consuming, and needs significant effort. So, it is important to develop an unsupervised method for the measurement of Cobb angle with good accuracy.
View Article and Find Full Text PDFScoliosis is a medical condition marked by an abnormal lateral curvature of the spine, typically forming a sideways "S" or "C" shape. Mechanically, it manifests as a three-dimensional deformation of the spine, potentially leading to diverse clinical issues such as pain, diminished lung capacity, and postural abnormalities. This research specifically concentrates on the Adolescent Idiopathic Scoliosis (AIS) population, as existing literature indicates a tendency for this type of scoliosis to deteriorate over time.
View Article and Find Full Text PDFMild cognitive impairment (MCI) is the precursor to the advanced stage of Alzheimer's disease (AD), and it is important to detect the transition to the MCI condition as early as possible. Trends in daily routines/activities provide a measurement of cognitive/functional status, particularly in older adults. In this study, activity data from longitudinal monitoring through in-home ambient sensors are leveraged in predicting the transition to the MCI stage at a future time point.
View Article and Find Full Text PDFThis paper presents the feasibility of automated and accurate in vivo measurements of vascular parameters using an ultrasound sensor. The continuous and non-invasive monitoring of certain parameters, such as pulse wave velocity (PWV), blood pressure (BP), arterial compliance (AC), and stiffness index (SI), is crucial for assessing cardiovascular disorders during surgeries and follow-up procedures. Traditional methods, including cuff-based or invasive catheter techniques, serve as the gold standard for measuring BP, which is then manually used to calculate AC and SI through imaging algorithms.
View Article and Find Full Text PDFIn this work, we developed a prototype that adopted sound-based systems for localization of visually impaired individuals. The system was implemented based on a wireless ultrasound network, which helped the blind and visually impaired to navigate and maneuver autonomously. Ultrasonic-based systems use high-frequency sound waves to detect obstacles in the environment and provide location information to the user.
View Article and Find Full Text PDFSkeletal muscle is considered as a near-constant volume system, and the contractions of the muscle are related to the changes in tissue thickness. Assessment of the skeletal muscle contractile parameters such as maximum contraction thickness ( T h ), contraction time ( T c ), contraction velocity ( V c ), sustain time ( T s ), and half-relaxation ( T r ) provides valuable information for various medical applications. This paper presents a single-element wearable ultrasonic sensor (WUS) and a method to measure the skeletal muscle contractile parameters in A-mode ultrasonic data acquisition.
View Article and Find Full Text PDF