Publications by authors named "Ibrahim Al-Shourbaji"

In the contemporary context of a burgeoning energy crisis, the accurate and dependable prediction of Solar Radiation (SR) has emerged as an indispensable component within thermal systems to facilitate renewable energy generation. Machine Learning (ML) models have gained widespread recognition for their precision and computational efficiency in addressing SR prediction challenges. Consequently, this paper introduces an innovative SR prediction model, denoted as the Cheetah Optimizer-Random Forest (CO-RF) model.

View Article and Find Full Text PDF

Dementia is a neuro-degenerative disorder with a high death rate, mainly due to high human error, time, and cost of the current clinical diagnostic techniques. The existing dementia detection methods using hand-crafted electroencephalogram (EEG) signal features are unreliable. A convolution neural network using spatiotemporal EEG signals (STEADYNet) is presented to improve the dementia detection.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a progressive and incurable neurologi-cal disorder with a rising mortality rate, worsened by error-prone, time-intensive, and expensive clinical diagnosis methods. Automatic AD detection methods using hand-crafted Electroencephalogram (EEG) signal features lack accuracy and reliability. A lightweight convolution neural network for AD detection (LCADNet) is investigated to extract disease-specific features while reducing the detection time.

View Article and Find Full Text PDF

Customer churn remains a critical challenge in telecommunications, necessitating effective churn prediction (CP) methodologies. This paper introduces the Enhanced Gradient Boosting Model (EGBM), which uses a Support Vector Machine with a Radial Basis Function kernel (SVM) as a base learner and exponential loss function to enhance the learning process of the GBM. The novel base learner significantly improves the initial classification performance of the traditional GBM and achieves enhanced performance in CP-EGBM after multiple boosting stages by utilizing state-of-the-art decision tree learners.

View Article and Find Full Text PDF

Pre-trained machine learning models have recently been widely used to detect COVID-19 automatically from X-ray images. Although these models can selectively retrain their layers for the desired task, the output remains biased due to the massive number of pre-trained weights and parameters. This paper proposes a novel batch normalized convolutional neural network (BNCNN) model to identify COVID-19 cases from chest X-ray images in binary and multi-class frameworks with a dual aim to extract salient features that improve model performance over pre-trained image analysis networks while reducing computational complexity.

View Article and Find Full Text PDF