Inefficient drug delivery to the brain is a major obstacle for pharmacological management of brain diseases. We investigated the ability of bolavesicles - monolayer membrane vesicles self-assembled from synthetic bolaamphiphiles that contain two hydrophilic head groups at each end of a hydrophobic alkyl chain - to permeate the blood-brain barrier and to deliver the encapsulated materials into the brain. Cationic vesicles with encapsulated kyotorphin and leu-enkephalin (analgesic peptides) were prepared from the bolalipids GLH-19 and GLH-20 and studied for their analgesic effects in vivo in experimental mice.
View Article and Find Full Text PDFBolaamphiphilic cationic vesicles with acetylcholine (ACh) surface groups were investigated for their ability to deliver a model protein-bovine serum albumin conjugated to fluorescein isothiocyanate (BSA-FITC) across biological barriers in vitro and in vivo. BSA-FITC-loaded vesicles were internalized into cells in culture, including brain endothelial b.End3 cells, at 37 °C, but not at 4 °C, indicating an active uptake process.
View Article and Find Full Text PDF