Publications by authors named "Ibolya Rutkai"

Increasing evidence indicates the role of mitochondrial and vascular dysfunction in aging and aging-associated pathologies; however, the exact mechanisms and chronological processes remain enigmatic. High-energy demand organs, such as the brain, depend on the health of their mitochondria and vasculature for the maintenance of normal functions, therefore representing vulnerable targets for aging. This methodology article describes an analysis pipeline for three-dimensional (3-D) mitochondria-associated signal geometry of two-photon image stacks of brain vasculature.

View Article and Find Full Text PDF

We previously reported evidence that oxidative stress during aging leads to adverse protein profile changes of brain cortical microvessels (MVs: end arterioles, capillaries, and venules) that affect mRNA/protein stability, basement membrane integrity, and ATP synthesis capacity in mice. As an extension of our previous study, we also found that proteins which comprise the blood-brain barrier (BBB) and regulate mitochondrial quality control were also significantly decreased in the mice's cortical MVs with aging. Interestingly, the neuroinflammatory protein fibrinogen (Fgn) was increased in mice brain MVs, which corresponds with clinical reports indicating that the plasma Fgn concentration increased progressively with aging.

View Article and Find Full Text PDF

Cognitive impairment and dementias during aging such as Alzheimer's disease are linked to functional decline and structural alterations of the brain microvasculature. Although mechanisms leading to microvascular changes during aging are not clear, loss of mitochondria, and reduced efficiency of remaining mitochondria appear to play a major role. Pharmacological agents, such as SS-31, which target mitochondria have been shown to be effective during aging and diseases; however, the benefit to mitochondrial- and non-mitochondrial proteins in the brain microvasculature has not been examined.

View Article and Find Full Text PDF

Despite the suppression of human immunodeficiency virus (HIV) replication by combined antiretroviral therapy (cART), 50-60% of HIV-infected patients suffer from HIV-associated neurocognitive disorders (HAND). Studies are uncovering the role of extracellular vesicles (EVs), especially exosomes, in the central nervous system (CNS) due to HIV infection. We investigated links among circulating plasma exosomal (crExo) proteins and neuropathogenesis in simian/human immunodeficiency virus (SHIV)-infected rhesus macaques (RM) and HIV-infected and cART treated patients (Patient-Exo).

View Article and Find Full Text PDF

Despite recent therapeutic advancements, ischemic stroke remains a major cause of death and disability. It has been previously demonstrated that  ~ 85-kDa recombinant human perlecan domain V (rhPDV) binds to upregulated integrin receptors (α2β1 and α5β1) associated with neuroprotective and functional improvements in various animal models of acute ischemic stroke. Recombinant human perlecan laminin-like globular domain 3 (rhPDV), a 21-kDa C-terminal subdomain of rhPDV, has been demonstrated to more avidly bind to the α2β1 integrin receptor than its parent molecule and consequently was postulated to evoke significant neuroprotective and functional effects.

View Article and Find Full Text PDF

Mitochondrial numbers and dynamics in brain blood vessels differ between young male and female rats under physiological conditions, but how these differences are affected by stroke is unclear. In males, we found that mitochondrial numbers, possibly due to mitochondrial fission, in large middle cerebral arteries (MCAs) increased following transient middle cerebral artery occlusion (tMCAO). However, mitochondrial effects of stroke on MCAs of female rats have not been studied.

View Article and Find Full Text PDF

Neurological manifestations are a significant complication of coronavirus disease (COVID-19), but underlying mechanisms aren't well understood. The development of animal models that recapitulate the neuropathological findings of autopsied brain tissue from patients who died from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are critical for elucidating the neuropathogenesis of infection and disease. Here, we show neuroinflammation, microhemorrhages, brain hypoxia, and neuropathology that is consistent with hypoxic-ischemic injury in SARS-CoV-2 infected non-human primates (NHPs), including evidence of neuron degeneration and apoptosis.

View Article and Find Full Text PDF

Transient receptor potential melastatin-4 (TRPM4) is activated by an increase in intracellular Ca concentration and is expressed on smooth muscle cells (SMCs). It is implicated in the myogenic constriction of cerebral arteries. We hypothesized that TRPM4 has a general role in intracellular Ca signal amplification in a wide range of blood vessels.

View Article and Find Full Text PDF

Differentially expressed (DE) proteins in the cortical microvessels (MVs) of young, middle-aged, and old male and female mice were evaluated using discovery-based proteomics analysis (> 4,200 quantified proteins/group). Most DE proteins (> 90%) showed no significant differences between the sexes; however, some significant DE proteins showing sexual differences in MVs decreased from young (8.3%), to middle-aged (3.

View Article and Find Full Text PDF
Article Synopsis
  • Sex significantly impacts the function of brain microvessels (MVs) and their vulnerability to neurological diseases, though the specific mechanisms remain unclear.
  • A study using RNA sequencing on MVs from young male and female rats found that 298 genes showed significant differences in expression, with more genes being expressed in female MVs.
  • The research highlights distinct pathways affected by sex, with males showing pathways related to lipid synthesis and females having pathways involved in translation, setting the stage for further investigation into sex-specific neurological disease mechanisms.
View Article and Find Full Text PDF

Damage to the cerebral vascular endothelium is a critical initiating event in the development of HIV-1-associated neurocognitive disorders. To study the role of mitochondria in cerebral endothelial dysfunction, we investigated how exosomes, isolated from both cell lines with integrated provirus and HIV-1 infected primary cells (HIV-exosomes), accelerate the dysfunction of primary human brain microvascular endothelial cells (HBMVECs) by inducing mitochondrial hyperfusion, and reducing the expression of phosphorylated endothelial nitric oxide synthase (p-eNOS). The quantitative analysis of the extracellular vesicles (EVs) indicates that the isolated EVs were predominantly exosomes.

View Article and Find Full Text PDF

Mitochondria are important regulators of cerebral vascular function in health and disease, but progress in understanding their roles has been hindered by methodological limitations. We report the first in vivo imaging of mitochondria specific to the cerebral endothelium in real time in the same mouse for extended periods. Mice expressing Dendra2 fluorescent protein in mitochondria (mito-Dendra2) in the cerebral vascular endothelium were generated by breeding PhAM-floxed and Tie2-Cre mice.

View Article and Find Full Text PDF

The extracellular matrix fragment perlecan domain V is neuroprotective and functionally restorative following experimental stroke. As neurogenesis is an important component of chronic post-stroke repair, and previous studies have implicated perlecan in developmental neurogenesis, we hypothesized that domain V could have a broad therapeutic window by enhancing neurogenesis after stroke. We demonstrated that domain V is chronically increased in the brains of human stroke patients, suggesting that it is present during post-stroke neurogenic periods.

View Article and Find Full Text PDF

Sex differences in mitochondrial numbers and function are present in large cerebral arteries, but it is unclear whether these differences extend to the microcirculation. We performed an assessment of mitochondria-related proteins in cerebral microvessels (MVs) isolated from young, male and female, Sprague-Dawley rats. MVs composed of arterioles, capillaries, and venules were isolated from the cerebrum and used to perform a 3 versus 3 quantitative, multiplexed proteomics experiment utilizing tandem mass tags (TMT), coupled with liquid chromatography/mass spectrometry (LC/MS).

View Article and Find Full Text PDF

Perlecan is a heparan sulfate proteoglycan protein in the extracellular matrix that structurally and biochemically supports the cerebrovasculature by dynamically responding to changes in cerebral blood flow. These changes in perlecan expression seem to be contradictory, ranging from neuroprotective and angiogenic to thrombotic and linked to lipid retention. This review investigates perlecan's influence on risk factors such as diabetes, hypertension, and amyloid that effect Vascular contributions to Cognitive Impairment and Dementia (VCID).

View Article and Find Full Text PDF

One of the major characteristics of hyperglycemic states such as type 2 diabetes is increased reactive oxygen species (ROS) generation. Since mitochondria are a major source of ROS, it is vital to understand the involvement of these organelles in the pathogenesis of ROS-mediated conditions. Therefore, we investigated mitochondrial function and ROS production in cerebral blood vessels of 21-wk-old Zucker diabetic fatty obese rats and their lean controls.

View Article and Find Full Text PDF
Article Synopsis
  • Measuring mitochondrial respiration in brain tissue helps us understand the central nervous system's function and disorders, focusing on isolated mitochondria for more accurate results.
  • The article details an optimized protocol using the Agilent Seahorse XFe24 Analyzer to measure complex I and II-mediated respiration in isolated mouse brain mitochondria, specifying ideal concentrations for various reagents.
  • The study also emphasizes the importance of data analysis and how these measurements can inform mechanistic studies related to conditions like stroke.
View Article and Find Full Text PDF

Mitochondria play a critical role in the cardiomyocyte physiology by generating majority of the ATP required for the contraction/relaxation through oxidative phosphorylation (OXPHOS). Aging is a major risk factor for cardiovascular diseases (CVD) and mitochondrial dysfunction has been proposed as potential cause of aging. Recent technological innovations in Seahorse XFe24 Analyzer enhanced the detection sensitivity of oxygen consumption rate and proton flux to advance our ability study mitochondrial function.

View Article and Find Full Text PDF

The underlying factors promoting increased mitochondrial proteins, mtDNA, and dilation to mitochondrial-specific agents in male rats following tMCAO are not fully elucidated. Our goal was to determine the morphological and functional effects of ischemia/reperfusion (I/R) on mitochondria using electron microscopy, Western blot, mitochondrial oxygen consumption rate (OCR), and Ca sparks activity measurements in middle cerebral arteries (MCAs) from male Sprague Dawley rats (Naïve, tMCAO, Sham). We found a greatly increased OCR in ipsilateral MCAs (IPSI) compared with contralateral (CONTRA), Sham, and Naïve MCAs.

View Article and Find Full Text PDF

Mitochondrial dysfunction has been suggested as a potential underlying cause of pathological conditions associated with type 2 diabetes (T2DM). We have previously shown that mitochondrial respiration and mitochondrial protein levels were similar in the large cerebral arteries of insulin-resistant Zucker obese rats and their lean controls. In this study, we extend our investigations into the mitochondrial dynamics of the cerebral vasculature of 14-week-old Zucker diabetic fatty obese (ZDFO) rats with early T2DM.

View Article and Find Full Text PDF

Mitochondria not only produce energy in the form of ATP to support the activities of cells comprising the neurovascular unit, but mitochondrial events, such as depolarization and/or ROS release, also initiate signaling events which protect the endothelium and neurons against lethal stresses via pre-/postconditioning as well as promote changes in cerebral vascular tone. Mitochondrial depolarization in vascular smooth muscle (VSM), via pharmacological activation of the ATP-dependent potassium channels on the inner mitochondrial membrane (mitoKATP channels), leads to vasorelaxation through generation of calcium sparks by the sarcoplasmic reticulum and subsequent downstream signaling mechanisms. Increased release of ROS by mitochondria has similar effects.

View Article and Find Full Text PDF

The diverse signaling events following mitochondrial depolarization in neurons are not clear. We examined for the first time the effects of mitochondrial depolarization on mitochondrial function, intracellular calcium, neuronal nitric oxide synthase (nNOS) activation, and nitric oxide (NO) production in cultured neurons and perivascular nerves. Cultured rat primary cortical neurons were studied on 7-10 days in vitro, and endothelium-denuded cerebral arteries of adult Sprague-Dawley rats were studied ex vivo.

View Article and Find Full Text PDF

Little is known about mitochondrial functioning in the cerebral vasculature during insulin resistance (IR). We examined mitochondrial respiration in isolated cerebral arteries of male Zucker obese (ZO) rats and phenotypically normal Zucker lean (ZL) rats using the Seahorse XFe24 analyzer. We investigated mitochondrial morphology in cerebral blood vessels as well as mitochondrial and nonmitochondrial protein expression levels in cerebral arteries and microvessels.

View Article and Find Full Text PDF

Mitochondrial respiration has never been directly examined in intact cerebral arteries. We tested the hypothesis that mitochondrial energetics of large cerebral arteries ex vivo are sex dependent. The Seahorse XFe24 analyzer was used to examine mitochondrial respiration in isolated cerebral arteries from adult male and female Sprague-Dawley rats.

View Article and Find Full Text PDF