Brain regions affected by Alzheimer disease (AD) display well-recognized early neuropathologic features in the endolysosomal and autophagy systems of neurons, including enlargement of endosomal compartments, progressive accumulation of autophagic vacuoles, and lysosomal dysfunction. Although the primary causes of these disturbances are still under investigation, a growing body of evidence suggests that the amyloid precursor protein (APP) intracellular C-terminal fragment β (C99), generated by cleavage of APP by β-site APP cleaving enzyme 1 (BACE-1), is the primary cause of the endosome enlargement in AD and the earliest initiator of synaptic plasticity and long-term memory impairment. The aim of the present study was to evaluate the possible relationship between the endolysosomal degradation pathway and autophagy on the proteolytic processing and turnover of C99.
View Article and Find Full Text PDFTo characterize the molecular mechanism and map the response element used by progesterone (P) to upregulate tissue factor (TF) in breast cancer cells. TF expression and mRNA levels were analyzed in breast cancer ZR-75 and T47D cells, using Western blot and real-time PCR, respectively. Mapping of the TF promoter was performed using luciferase vectors.
View Article and Find Full Text PDFKnockout models have shown that the coagulation system has a role in vascular development and angiogenesis. Herein, we report for the first time that zymogen FX and its active form (FXa) possess anti-angiogenic properties. Both the recombinant FX and FXa inhibit angiogenesis in vitro using endothelial EA.
View Article and Find Full Text PDF