Publications by authors named "Ibarburu I"

The prominent role of electron-electron interactions in two-dimensional (2D) materials is at the origin of a great variety of fermionic correlated states reported in the literature. Artificial van der Waals heterostructures comprising single layers of highly correlated insulators allow one to explore the effect of the subtle interlayer interaction in the way electrons interact. We study the temperature dependence of the electronic properties of a van der Waals heterostructure composed of a single-layer Mott insulator lying on a metallic substrate by performing quasi-particle interference (QPI) maps.

View Article and Find Full Text PDF

This study delves into the intriguing properties of the 1H/1T-TaS van der Waals heterostructure, focusing on the transparency of the 1H layer to the charge density wave of the underlying 1T layer. Despite the sizable interlayer separation and metallic nature of the 1H layer, positive bias voltages result in a pronounced superposition of the 1T charge density wave structure on the 1H layer. The conventional explanation relying on tunneling effects proves insufficient.

View Article and Find Full Text PDF

Molecular functionalization of MoS has attracted a lot of attention due to its potential to afford fine-tuned hybrid materials that benefit from the power of synthetic chemistry and molecular design. Here, we report on the on-surface reaction of maleimides on bulk and molecular beam epitaxy grown single-layer MoS, both in ambient conditions as well as ultrahigh vacuum using scanning probe microscopy.

View Article and Find Full Text PDF

Zebrafish is a popular toxicology model and provides an ethically acceptable small-scale analysis system with the complexity of a complete organism. Our goal is to further validate this model for its regulatory use for reproductive and developmental defects by testing the compounds indicated in the "Guideline on detection of reproductive and developmental toxicity for human pharmaceuticals" (ICH S5(R3) guideline.) To determine the embryotoxic and developmental risk of the 32 reference compounds listed in the ICH S5(R3) guideline, the presence of morphological alterations in zebrafish embryos was analyzed at two different stages to calculateLC50 and EC50 values for each stage.

View Article and Find Full Text PDF

Kondo lattices are systems with unusual electronic properties that stem from strong electron correlation, typically studied in intermetallic 3D compounds containing lanthanides or actinides. Lowering the dimensionality of the system enhances the role of electron correlations providing a new tuning knob for the search of novel properties in strongly correlated quantum matter. The realization of a 2D Kondo lattice by stacking a single-layer Mott insulator on a metallic surface is reported.

View Article and Find Full Text PDF

In this work we fabricate and characterize a functionalized superconducting (SC) Nb tip of a scanning tunnelling microscope (STM). The tip is functionalized with a Tetracyanoquinodimethane molecule (TCNQ) that accepts charge from the tip and develops a magnetic moment. As a consequence, in scanning tunnelling spectroscopy (STS), sharp, bias symmetric sub-gap states identified as Yu-Shiba-Rusinov (YSR) bound states appear against the featureless density of states of a metallic graphene on Ir(111) sample.

View Article and Find Full Text PDF

Engineering the growth of the different phases of two-dimensional transition metal dichalcogenides (2D-TMDs) is a promising way to exploit their potential since the phase determines their physical and chemical properties. Here, we report on the epitaxial growth of monolayer MoTe on graphene on an Ir(111) substrate. Scanning tunneling microscopy and spectroscopy provide insights into the structural and electronic properties of the different polymorphic phases, which remain decoupled from the substrate due to the weak interaction with graphene.

View Article and Find Full Text PDF

Many lactic acid bacteria synthesize extracellular polysaccharides (exopolysaccharides, EPSs) with a large variation in structure and potential functional properties. Although EPS production can produce detrimental effects in alcoholic beverages, these polymers play an important role in the rheological behavior and texture of fermented products. In this work, EPS production by two Lactobacillus suebicus strains, which were isolated from ropy ciders, was examined in a semidefined medium.

View Article and Find Full Text PDF

Strains CUPV261(T) and CUPV262 were isolated from ropy natural ciders of the Basque Country, Spain, in 2007. Cells are Gram-stain positive, non-spore-forming, motile rods, facultative anaerobes and catalase-negative. The strains are obligately homofermentative (final product dl-lactate) and produce exopolysaccharides from sucrose.

View Article and Find Full Text PDF

Lactic acid bacteria (LAB) produce homopolysaccharides (HoPS) and heteropolysaccharides (HePS) with potential functional properties. In this work, we have performed a comparative analysis of production and purification trials of these biopolymers from bacterial culture supernatants. LAB strains belonging to four different genera, both natural as well as recombinant, were used as model systems for the production of HoPS and HePS.

View Article and Find Full Text PDF

Ropiness in natural cider is a relatively frequent alteration, mainly found after bottling, leading to consumer rejection. It is derived from the production of exopolysaccharides (EPS) by some lactic acid bacteria most of which synthesize a 2-branched (1,3)-beta-D-glucan and belong to the genera Pediococcus, Lactobacillus and Oenococcus. This polysaccharide synthesis is controlled by a single transmembrane glycosyltransferase (GTF).

View Article and Find Full Text PDF

Tapping mode atomic force microscopy (TM-AFM) has been used to analyze the supramolecular structure and conformation of the (1-->3)(1-->2)-beta-D-glucan produced by Lactobacillus suebicus CUPV221 isolated from cider. Solutions for TM-AFM observation were prepared by dispersing the solid glucan in distilled water and in alkaline aqueous solutions. It was found that from the distilled water at 10 mg/L or higher concentrations, the (1-->3)(1-->2)-beta-D-glucan forms networks.

View Article and Find Full Text PDF

Several lactic acid bacteria were isolated from bitter tasting ciders in which glycerol was partially removed. The degradation of glycerol via glycerol dehydratase pathway was found in 22 out of 67 isolates. The confirmation of glycerol degradation by this pathway was twofold: showing their glycerol dehydratase activity and detecting the presence of the corresponding gene by a PCR method.

View Article and Find Full Text PDF

Aims: To study the influence of medium constituents on growth, and exopolysaccharide (EPS) production by a strain of Oenococcus oeni. The structure of one of the EPSs has also been characterized.

Methods And Results: EPS concentration was estimated by the phenol/sulfuric acid method.

View Article and Find Full Text PDF

The influence of carbohydrate source on growth, exopolysaccharide (EPS) production and on the activity of the enzymes implicated in energy generation and UDP-glucose synthesis in Pediococcus parvulus 2.6 was evaluated. The highest EPS production was obtained on glucose, while fructose was a poor substrate for EPS synthesis.

View Article and Find Full Text PDF

Exopolysaccharide production by lactic acid bacteria is beneficial in the dairy and oat-based food industries and is used to improve the texture of the fermented products. However, beta-D-glucan-producing bacteria are considered spoilage microorganisms in alcoholic beverages because their secreted exopolysaccharides alter the viscosity of cider, wine, and beer, rendering them unpalatable. The plasmidic glycosyltransferase (gtf) gene of the Pediococcus parvulus 2.

View Article and Find Full Text PDF