Publications by authors named "Iban Seiliez"

Amino acid (AA) transporters (AAT) control AA cellular fluxes across membranes, contributing to maintain cellular homeostasis. In this study, we took advantage of rainbow trout metabolic feature, which highly relies on dietary AA, to explore the cellular and physiological consequences of unbalanced diets on AAT dysregulations with a particular focus on cationic AAs (CAA), frequently underrepresented in plant-based diets. Results evidenced that 24 different CAAT are expressed in various trout tissues, part of which being subjected to AA- and CAA-dependent regulations, with exchanger being prone to the strongest dysregulations.

View Article and Find Full Text PDF

Chaperone-mediated autophagy (CMA) is a major pathway of lysosomal proteolysis critical for cellular homeostasis and metabolism, and whose defects have been associated with several human pathologies. While CMA has been well described in mammals, functional evidence has only recently been documented in fish, opening up new perspectives to tackle this function under a novel angle. Now we propose to explore CMA functions in the rainbow trout (RT, ), a fish species recognized as a model organism of glucose intolerance and characterized by the presence of two paralogs of the CMA-limiting factor Lamp2A (lysosomal associated membrane protein 2A).

View Article and Find Full Text PDF

Autophagy is a pleiotropic and evolutionarily conserved process in eukaryotes that encompasses different types of mechanisms by which cells deliver cytoplasmic constituents to the lysosome for degradation. Interestingly, in mammals, two different and specialized autophagic pathways, (i) the chaperone-mediated autophagy (CMA) and (ii) the endosomal microautophagy (eMI), both rely on the use of the same cytosolic chaperone HSPA8 (also known as HSC70) for targeting specific substrates to the lysosome. However, this is not true for all organisms, and differences exist between species with respect to the coexistence of these two autophagic routes.

View Article and Find Full Text PDF

The replacement of fishmeal by plant proteins in aquafeeds imposes the use of synthetic methionine (MET) sources to balance the amino acid composition of alternative diets and so to meet the metabolic needs of fish of agronomic interest such as rainbow trout (RT-). Nonetheless, debates still exist to determine if one MET source is more efficiently used than another by fish. To address this question, the use of fish cell lines appeared a convenient strategy, since it allowed to perfectly control cell growing conditions notably by fully depleting MET from the media and studying which MET source is capable to restore cell growth/proliferation and metabolism when supplemented back.

View Article and Find Full Text PDF

Myostatin deficiency leads to extensive skeletal muscle hypertrophy, but its consequence on post-mortem muscle proteolysis is unknown. Here, we compared muscle myofibrillar protein degradation, and autophagy, ubiquitin-proteasome and Ca-dependent proteolysis relative to the energetic and redox status in wild-type (WT) and myostatin knock-out mice (KO) during early post-mortem storage. KO muscles showed higher degradation of myofibrillar proteins in the first 24 h after death, associated with preserved antioxidant status, compared with WT muscles.

View Article and Find Full Text PDF

Adipogenesis is a tightly regulated process, and the involvement of autophagy has been recently proposed in mammalian models. In rainbow trout, two well-defined phases describe the development of primary cultured adipocyte cells: proliferation and differentiation. Nevertheless, information on the transcriptional profile at the onset of differentiation and the potential role of autophagy in this process is scarce.

View Article and Find Full Text PDF
Article Synopsis
  • In 2008, guidelines were established for researching autophagy, which has since gained significant interest and new technologies, necessitating regular updates to monitoring methods across various organisms.
  • The new guidelines emphasize selecting appropriate techniques to evaluate autophagy while noting that no single method suits all situations; thus, a combination of methods is encouraged.
  • The document highlights that key proteins involved in autophagy also impact other cellular processes, suggesting genetic studies should focus on multiple autophagy-related genes to fully understand these pathways.
View Article and Find Full Text PDF
Article Synopsis
  • - Chaperone-mediated autophagy (CMA) is crucial for maintaining cellular balance and was previously thought to only occur in mammals and birds due to the absence of the LAMP2A protein in non-tetrapod lineages.
  • - Recent research by Lescat et al. has discovered CMA activity in fish, challenging the belief that this process is exclusive to tetrapods.
  • - The findings suggest a need to explore CMA using versatile genetic models like zebrafish and medaka to better understand its evolutionary significance across different species.
View Article and Find Full Text PDF

Nowadays, aquaculture provides more than 50% of fish consumed worldwide but faces new issues that challenge its sustainability. One of them relies on the replacement of fish meal (FM) in aquaculture feeds by other protein sources without deeply affecting the whole organism's homeostasis. Multiple strategies have already been tested using in vivo approaches, but they hardly managed to cope with the multifactorial problems related to the complexities of fish biology together with new feed formulations.

View Article and Find Full Text PDF

Autophagy (a process of cellular self-eating) is a conserved cellular degradative process that plays important roles in maintaining homeostasis and preventing nutritional, metabolic, and infection-mediated stresses. Surprisingly, little attention has been paid to the role of this cellular function in species of agronomical interest, and the details of how autophagy functions in the development of phenotypes of agricultural interest remain largely unexplored. Here, we first provide a brief description of the main mechanisms involved in autophagy, then review our current knowledge regarding autophagy in species of agronomical interest, with particular attention to physiological functions supporting livestock animal production, and finally assess the potential of translating the acquired knowledge to improve animal development, growth and health in the context of growing social, economic and environmental challenges for agriculture.

View Article and Find Full Text PDF

The effect of methylmercury (MeHg) was investigated in glass eel migration behavior and metabolism. To migrate up estuary, glass eels synchronize their swimming activity to the flood tide and remain on or in the substratum during ebb tide. Following seven days of exposure to MeHg (100 ng L), glass eels migration behavior was expressed by their swimming synchronization to the water current reversal every 6.

View Article and Find Full Text PDF

Chaperone-mediated autophagy (CMA) is a major pathway of lysosomal proteolysis recognized as a key player of the control of numerous cellular functions, and whose defects have been associated with several human pathologies. To date, this cellular function is presumed to be restricted to mammals and birds, due to the absence of an identifiable lysosome-associated membrane protein 2A (LAMP2A), a limiting and essential protein for CMA, in nontetrapod species. However, the recent identification of expressed sequences displaying high homology with mammalian LAMP2A in several fish species challenges that view and suggests that CMA likely appeared earlier during evolution than initially thought.

View Article and Find Full Text PDF

Induced by overfeeding, hepatic steatosis is a process exploited for the "foie gras" production in mule ducks. To better understand the mechanisms underlying its development, the physiological responses of mule ducks overfed with corn for a duration of 11 days were analyzed. A kinetic analysis of glucose and lipid metabolism and cell protection mechanisms was performed on 96 male mule ducks during overfeeding with three sampling times (after the 4th, the 12th, and the 22nd meal).

View Article and Find Full Text PDF

Methionine is a key factor in modulating the cellular availability of the main biological methyl donor -adenosylmethionine (SAM), which is required for all biological methylation reactions including DNA and histone methylation. As such, it represents a potential critical factor in nutritional programming. Here, we investigated whether early methionine restriction at first feeding could have long-term programmed metabolic consequences in rainbow trout.

View Article and Find Full Text PDF

Autophagy is an evolutionarily conserved process of cellular self-eating which emerged these last years as a major adaptive metabolic response to various stresses such as fasting, hypoxia, or environmental pollutants. However, surprisingly very few data is currently available on its role in fish species which are directly exposed to frequent environmental perturbations. Here, we report that the treatment of fasted trout hepatocytes with the autophagy inhibitor Bafilomycine A1 lowered the mRNA levels of many of the gluconeogenesis-related genes and increased those of genes involved in intracellular lipid stores.

View Article and Find Full Text PDF

Background: Environmental changes of biotic or abiotic nature during critical periods of early development may exert a profound influence on physiological functions later in life. This process, named developmental programming can also be driven through parental nutrition. At molecular level, epigenetic modifications are the most likely candidate for persistent modulation of genes expression in later life.

View Article and Find Full Text PDF

The low levels of methionine in vegetable raw materials represent a limit to their use in aquafeed. Methionine is considered as an important factor in the control of oxidative status. However, restriction of dietary methionine has been shown to reduce generation of mitochondrial oxygen radicals and thus oxidative damage in liver.

View Article and Find Full Text PDF

Chaperone-mediated autophagy (CMA) is a major pathway of lysosomal proteolysis essential for the control of intermediary metabolism. So far, the absence of any identifiable LAMP2A - a necessary and limiting protein for CMA - outside of the tetrapod clade, led to the paradigm that this cellular function was (presumably) restricted to mammals and birds. However, after we identified expressed sequences displaying high sequence homology with the mammalian LAMP2A in several fish species, our findings challenge that view and suggest that CMA likely appeared much earlier during evolution than initially thought.

View Article and Find Full Text PDF

Autophagy is an evolutionary conserved cellular self-degradation process considered as a major energy mobilizing system in eukaryotes. It has long been considered as a post-translationally regulated event, and the importance of transcriptional regulation of autophagy-related genes (atg) for somatic maintenance and homeostasis during long period of stress emerged only recently. In this regard, large changes in atg transcription have been documented in several species under diverse types of prolonged catabolic situations.

View Article and Find Full Text PDF

The zebrafish () remains the teleost fish of choice for biological investigations due to the vast array of molecular tools and resources available. To better understand the epigenetic regulation of autophagy, we utilized a primary myotube culture system generated from isolated myogenic precursor cells (MPCs) from zebrafish grown under starvation conditions using a media devoid of serum and amino acids. Here, we report starvation-induced regulation of several autophagy-related genes () expression and profile the distribution of H3K27me3, H3K9me3, and H3K4me3 marks along , and loci.

View Article and Find Full Text PDF

In fish, data on microRNAs (miRNAs) involved in myogenesis are scarce. In order to identify miRNAs involved in satellite cell differentiation, we used a methionine depletion/replenishment protocol to synchronize myogenic cell differentiation. Our results validated that methionine removal (72 h) from the medium strongly decreased and expression, indicating differentiation arrest.

View Article and Find Full Text PDF

Monitoring autophagic flux in vivo or in organs remains limited and the ideal methods relative to the techniques possible with cell culture may not exist. Recently, a few papers have demonstrated the feasibility of measuring autophagic flux in vivo by intraperitoneal (IP) injection of pharmacological agents (chloroquine, leupeptin, vinblastine, and colchicine). However, the metabolic consequences of the administration of these drugs remain largely unknown.

View Article and Find Full Text PDF

The link between dietary carbohydrate/protein and de novo lipogenesis (DNL) remains debatable in carnivorous fish. We aimed to evaluate and compare the response of hepatic lipogenic gene expression to dietary carbohydrate intake/glucose and dietary protein intake/amino acids (AAs) during acute stimulations using both in vivo and in vitro approaches. For the in vivo trial, three different diets and a controlled-feeding method were employed to supply fixed amount of dietary protein or carbohydrate in a single meal; for the in vitro trial, primary hepatocytes were stimulated with a low or high level of glucose (3 mM or 20 mM) and a low or high level of AAs (one-fold or four-fold concentrated AAs).

View Article and Find Full Text PDF

Background/aims: Carnivores exhibit poor utilization of dietary carbohydrates and glucose intolerant phenotypes, yet it remains unclear what are the causal factors and underlying mechanisms. We aimed to evaluate excessive amino acids (AAs)-induced effects on insulin signaling, fatty acid biosynthesis and glucose metabolism in rainbow trout and determine the potential involvement of mTORC1 and p38 MAPK pathway.

Methods: We stimulated trout primary hepatocytes with different AA levels and employed acute administration of rapamycin to inhibit mTORC1 activation.

View Article and Find Full Text PDF