This study was performed to explore the feasibility of tracing nanoparticles for drug transport in the healthy rat brain with a clinical MRI scanner. Phantom studies were performed to assess the R1 ( = 1/T1) relaxivity of different magnetically labeled nanoparticle (MLNP) formulations that were based on biodegradable human serum albumin and that were labeled with magnetite of different size. In vivo MRI measurements in 26 rats were done at 3T to study the effect and dynamics of MLNP uptake in the rat brain and body.
View Article and Find Full Text PDFIntroduction: The amyloid-β42 (Aβ42) peptide plays a crucial role in the pathogenesis of Alzheimer's disease (AD), the most common neurodegenerative disorder affecting the elderly. Over the past years, several approaches and compounds developed for the treatment of AD have failed in clinical studies, likely in part due to their low penetration of the blood-brain barrier (BBB). Since nanotechnology-based strategies offer new possibilities for the delivery of drugs to the brain, this technique is studied intensively for the treatment of AD and other neurological disorders.
View Article and Find Full Text PDF