Cross-scanner and cross-protocol variability of diffusion magnetic resonance imaging (dMRI) data are known to be major obstacles in multi-site clinical studies since they limit the ability to aggregate dMRI data and derived measures. Computational algorithms that harmonize the data and minimize such variability are critical to reliably combine datasets acquired from different scanners and/or protocols, thus improving the statistical power and sensitivity of multi-site studies. Different computational approaches have been proposed to harmonize diffusion MRI data or remove scanner-specific differences.
View Article and Find Full Text PDFOver 200 million malaria cases globally lead to half a million deaths annually. Accurate malaria diagnosis remains a challenge. Automated imaging processing approaches to analyze Thick Blood Films (TBF) could provide scalable solutions, for urban healthcare providers in the holoendemic malaria sub-Saharan region.
View Article and Find Full Text PDFIEEE Trans Pattern Anal Mach Intell
April 2018
In this work we address the task of semantic image segmentation with Deep Learning and make three main contributions that are experimentally shown to have substantial practical merit. First, we highlight convolution with upsampled filters, or 'atrous convolution', as a powerful tool in dense prediction tasks. Atrous convolution allows us to explicitly control the resolution at which feature responses are computed within Deep Convolutional Neural Networks.
View Article and Find Full Text PDFInt J Comput Vis
January 2016
Visual textures have played a key role in image understanding because they convey important semantics of images, and because texture representations that pool local image descriptors in an orderless manner have had a tremendous impact in diverse applications. In this paper we make several contributions to texture understanding. First, instead of focusing on texture instance and material category recognition, we propose a human-interpretable vocabulary of texture attributes to describe common texture patterns, complemented by a new for benchmarking.
View Article and Find Full Text PDFIEEE Trans Pattern Anal Mach Intell
July 2013
In this paper, we use shape grammars (SGs) for facade parsing, which amounts to segmenting 2D building facades into balconies, walls, windows, and doors in an architecturally meaningful manner. The main thrust of our work is the introduction of reinforcement learning (RL) techniques to deal with the computational complexity of the problem. RL provides us with techniques such as Q-learning and state aggregation which we exploit to efficiently solve facade parsing.
View Article and Find Full Text PDFIEEE Trans Pattern Anal Mach Intell
August 2009
In this work, we formulate the interaction between image segmentation and object recognition in the framework of the Expectation-Maximization (EM) algorithm. We consider segmentation as the assignment of image observations to object hypotheses and phrase it as the E-step, while the M-step amounts to fitting the object models to the observations. These two tasks are performed iteratively, thereby simultaneously segmenting an image and reconstructing it in terms of objects.
View Article and Find Full Text PDFIEEE Trans Pattern Anal Mach Intell
January 2009
In this work we approach the analysis and segmentation of natural textured images by combining ideas from image analysis and probabilistic modeling. We rely on AM-FM texture models and specifically on the Dominant Component Analysis (DCA) paradigm for feature extraction. This method provides a low-dimensional, dense and smooth descriptor, capturing essential aspects of texture, namely scale, orientation, and contrast.
View Article and Find Full Text PDF