Publications by authors named "Iart Luca Shytaj"

Coronaviruses pose a permanent risk of outbreaks, with three highly pathogenic species and strains (SARS-CoV, MERS-CoV, SARS-CoV-2) having emerged in the last twenty years. Limited antiviral therapies are currently available and their efficacy in randomized clinical trials enrolling SARS-CoV-2 patients has not been consistent, highlighting the need for more potent treatments. We previously showed that cobicistat, a clinically approved inhibitor of Cytochrome P450-3A (CYP3A), has direct antiviral activity against early circulating SARS-CoV-2 strains in vitro and in Syrian hamsters.

View Article and Find Full Text PDF

Integrated HIV-1 DNA persists in cells of people living with HIV during antiretroviral treatment, but its quantification is hindered by its rarity. Here, we present an optimized protocol to evaluate "shock and kill" therapeutic strategies, including both the latency reactivation ("shock") and elimination of infected cells ("kill") stages. We describe steps for the sequential use of nested PCR-based assays and viability sorting to allow for scalable and rapid screening of candidate therapeutics in patient-derived blood cells.

View Article and Find Full Text PDF

HIV-1 encounters the hierarchically organized host chromatin to stably integrate and persist in anatomically distinct latent reservoirs. The contribution of genome organization in HIV-1 infection has been largely understudied across different HIV-1 targets. Here, we determine HIV-1 integration sites (ISs), associate them with chromatin and expression signatures at different genomic scales in a microglia cell model, and profile them together with the primary T cell reservoir.

View Article and Find Full Text PDF

On 30 January 2020, the World Health Organization (WHO) declared the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epidemic a public health emergency of international concern. The viral outbreak led in turn to an exponential growth of coronavirus disease 2019 (COVID-19) cases, that is, a multiorgan disease that has led to more than 6.3 million deaths worldwide, as of June 2022.

View Article and Find Full Text PDF

Combinations of direct-acting antivirals are needed to minimize drug resistance mutations and stably suppress replication of RNA viruses. Currently, there are limited therapeutic options against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and testing of a number of drug regimens has led to conflicting results. Here, we show that cobicistat, which is an FDA-approved drug booster that blocks the activity of the drug-metabolizing proteins cytochrome P450-3As (CYP3As) and P-glycoprotein (P-gp), inhibits SARS-CoV-2 replication.

View Article and Find Full Text PDF

Background: We developed a personalized Monocyte-Derived Dendritic-cell Therapy (MDDCT) for HIV-infected individuals on suppressive antiretroviral treatment and evaluated HIV-specific T-cell responses.

Methods: PBMCs were obtained from 10 HIV individuals enrolled in trial NCT02961829. Monocytes were differentiated into DCs using IFN-α and GM-CSF.

View Article and Find Full Text PDF

HIV-1 infects lymphoid and myeloid cells, which can harbor a latent proviral reservoir responsible for maintaining lifelong infection. Glycolytic metabolism has been identified as a determinant of susceptibility to HIV-1 infection, but its role in the development and maintenance of HIV-1 latency has not been elucidated. By combining transcriptomic, proteomic, and metabolomic analyses, we here show that transition to latent HIV-1 infection downregulates glycolysis, while viral reactivation by conventional stimuli reverts this effect.

View Article and Find Full Text PDF

HIV-1 persists in a latent form during antiretroviral therapy, mainly in CD4 T cells, thus hampering efforts for a cure. HIV-1 infection is accompanied by metabolic alterations, such as oxidative stress, but the effect of cellular antioxidant responses on viral replication and latency is unknown. Here, we show that cells survive retroviral replication, both in vitro and in vivo in SIVmac-infected macaques, by upregulating antioxidant pathways and the intertwined iron import pathway.

View Article and Find Full Text PDF

Gold compounds have a long history of use as immunosuppressants, but their precise mechanism of action is not completely understood. Using our recently developed liver-on-a-chip platform we now show that gold compounds containing planar -heterocyclic carbene (NHC) ligands are potent ligands for the aryl hydrocarbon receptor (AHR). Further studies showed that the lead compound (MC3) activates TGFβ1 signaling and suppresses CD4 T-cell activation in vitro, in human and mouse T cells.

View Article and Find Full Text PDF

HIV-1 Nef promotes virus spread and disease progression by altering host cell transport and signaling processes through interaction with multiple host cell proteins. The N-terminal region in HIV-1 Nef encompassing residues 12 to 39 has been implicated in many Nef activities, including disruption of CD4 T lymphocyte polarization and homing to lymph nodes, antagonism of SERINC5 restriction to virion infectivity, downregulation of cell surface CD4 and major histocompatibility complex class I (MHC-I), release of Nef-containing extracellular vesicles, and phosphorylation of Nef by recruitment of the ef-ssociated inase omplex (NAKC). How this region mediates these pleiotropic functions is unclear.

View Article and Find Full Text PDF

Antiretroviral therapy (ART) is typically composed of a combination of three antiretroviral drugs and is the treatment of choice for people with human immunodeficiency virus type 1/acquired immune deficiency syndrome (HIV-1/AIDS). However, it is unable to impact on viral reservoirs, which harbour latent HIV-1 genomes that are able to reignite the infection upon treatment suspension. The aim of this study was to provide an estimate of the safety of the disease-modifying antirheumatic agent auranofin and its impact on the HIV-1 reservoir in humans under intensified ART.

View Article and Find Full Text PDF

Although the use of antioxidants for the treatment of cancer and HIV/AIDS has been proposed for decades, new insights gained from redox research have suggested a very different scenario. These new data show that the major cellular antioxidant systems, the thioredoxin (Trx) and glutathione (GSH) systems, actually promote cancer growth and HIV infection, while suppressing an effective immune response. Mechanistically, these systems control both the redox- and NO-based pathways (nitroso-redox homeostasis), which subserve innate and cellular immune defenses.

View Article and Find Full Text PDF

The restoration of the immune system prompted by antiretroviral therapy (ART) has allowed drastically reducing the mortality and morbidity of HIV infection. However, one main source of clinical concern is the persistence of immune hyperactivation in individuals under ART. Chronically enhanced levels of T-cell activation are associated with several deleterious effects which lead to faster disease progression and slower CD4(+) T-cell recovery during ART.

View Article and Find Full Text PDF

Background: Administration of antiretroviral therapy and two experimental drugs, auranofin and buthionine sulfoximine (BSO), was previously shown to be followed by drug-free control of chronic SIVmac251 infection, decreased immune activation and increased cell-mediated anti-Gag responses.

Methods: Phylogeny was analysed with Phylogeny.fr.

View Article and Find Full Text PDF

Unlabelled: Off-therapy control of viremia by HIV-infected individuals has been associated with two likely players: a restricted viral reservoir and an efficient cell-mediated immune response. We previously showed that a combination of highly suppressive antiretroviral therapy and two experimental drugs, i.e.

View Article and Find Full Text PDF

Despite the huge clinical success of antiretroviral therapy, several factors such as side effects, requirement of life-long adherence, high cost, incomplete access to therapies and development of drug resistance make the quest for an ultimate cure of HIV/AIDS a worldwide priority of biomedical research. In this respect, several sterilizing or functional cures have been reported in the last years in both non-human primates and humans. This review provides a summary of the main results achieved so far, outlining their strengths as well as their limitations.

View Article and Find Full Text PDF

Background: HIV infection persists despite antiretroviral treatment (ART) and is reignited as soon as therapies are suspended. This vicious cycle is fueled by the persistence of viral reservoirs that are invulnerable to standard ART protocols, and thus therapeutic agents able to target these reservoirs are needed. One such agent, auranofin, has recently been shown to decrease the memory T-cell reservoir in chronically SIVmac251-infected macaques.

View Article and Find Full Text PDF

Stably suppressed viremia during ART is essential for establishing reliable simian models for HIV/AIDS. We tested the efficacy of a multidrug ART (highly intensified ART) in a wide range of viremic conditions (10³-10⁷) viral RNA copies/mL) in SIVmac251-infected rhesus macaques, and its impact on the viral reservoir. Eleven macaques in the pre-AIDS stage of the disease were treated with a multidrug combination (highly intensified ART) consisting of two nucleosidic/nucleotidic reverse transcriptase inhibitors (emtricitabine and tenofovir), an integrase inhibitor (raltegravir), a protease inhibitor (ritonavir-boosted darunavir) and the CCR5 blocker maraviroc.

View Article and Find Full Text PDF