We report on the proof-of-concept of a low-mass, low-power method for collecting micron-sized sulfuric acid aerosols in bulk from the atmosphere of Venus. The collection method uses four wired meshes in a sandwich structure with a deposition area of 225 cm. It operates in two modes: passive and electrostatic.
View Article and Find Full Text PDFSpace Sci Rev
January 2024
This paper describes the architecture and demonstrates the capabilities of a newly developed, physically-based imaging simulator environment called SISPO, developed for small solar system body fly-by and terrestrial planet surface mission simulations. The image simulator utilises the open-source 3-D visualisation system Blender and its Cycles rendering engine, which supports physically based rendering capabilities and procedural micropolygon displacement texture generation. The simulator concentrates on realistic surface rendering and has supplementary models to produce realistic dust- and gas-environment optical models for comets and active asteroids.
View Article and Find Full Text PDF