Publications by authors named "Ianina L Violi"

The development of efficient nanoscale photon absorbers, such as plasmonic or high-index dielectric nanostructures, allows the remotely controlled release of heat on the nanoscale using light. These photothermal nanomaterials have found applications in various research and technological fields, ranging from materials science to biology. However, measuring the nanoscale thermal fields remains an open challenge, hindering full comprehension and control of nanoscale photothermal phenomena.

View Article and Find Full Text PDF

Localized surface plasmons are lossy and generate heat. However, accurate measurement of the temperature of metallic nanoparticles under illumination remains an open challenge, creating difficulties in the interpretation of results across plasmonic applications. Particularly, there is a quest for understanding the role of temperature in plasmon-assisted catalysis.

View Article and Find Full Text PDF

Obtaining arrays of single nanoparticles with three-dimensional complex shapes is still an open challenge. Current nanolithography methods do not allow for the preparation of nanoparticles with complex features like nanostars. In this work, we investigate the optical printing of gold nanostars of different sizes as a function of laser wavelength and power.

View Article and Find Full Text PDF
Article Synopsis
  • Colloidal chemistry enables the creation of diverse nanoparticles, but depositing them accurately on surfaces is difficult.
  • Optical printing has emerged as a flexible technique for placing various nanoparticles precisely on substrates over the last decade.
  • The article reviews current advancements in optical printing, highlighting challenges like printing accuracy, resolution, selectivity, and the stability of nanoparticles when exposed to light.
View Article and Find Full Text PDF

Several fields of applications require a reliable characterization of the photothermal response and heat dissipation of nanoscopic systems, which remains a challenging task for both modeling and experimental measurements. Here, we present an implementation of anti-Stokes thermometry that enables the photothermal characterization of individual nanoparticles (NPs) from a single hyperspectral photoluminescence confocal image. The method is label-free, potentially applicable to any NP with detectable anti-Stokes emission, and does not require any prior information about the NP itself or the surrounding media.

View Article and Find Full Text PDF

Estrogen receptor α (ERα) is expressed in tissues as diverse as brains and mammary glands. In breast cancer, ERα is a key regulator of tumor progression. Therefore, understanding what activates ERα is critical for cancer treatment in particular and cell biology in general.

View Article and Find Full Text PDF

Optical printing is a powerful all-optical method that allows the incorporation of colloidal nanoparticles (NPs) onto substrates with nanometric precision. Here, we present a systematic study of the accuracy of optical printing of Au and Ag NPs, using different laser powers and wavelengths. When using light of wavelength tuned to the localized surface plasmon resonance (LSPR) of the NPs, the accuracy improves as the laser power is reduced, whereas for wavelengths off the LSPR, the accuracy is independent of the laser power.

View Article and Find Full Text PDF

Optical printing holds great potential to enable the use of the vast variety of colloidal nanoparticles (NPs) in nano- and microdevices and circuits. By means of optical forces, it enables the direct assembly of NPs, one by one, onto specific positions of solid surfaces with great flexibility of pattern design and no need of previous surface patterning. However, for unclear causes it was not possible to print identical NPs closer to each other than 300 nm.

View Article and Find Full Text PDF

Optical printing has been proved a versatile and simple method to fabricate arbitrary arrays of colloidal nanoparticles (NPs) on substrates. Here, we show that is also a powerful tool for studying chemical reactions at the single NP level. We demonstrate that 60 nm gold NPs immobilized by optical printing can be used as seeds to obtain larger NPs by plasmon-assisted reduction of aqueous HAuCl.

View Article and Find Full Text PDF

Optical printing is a simple and flexible method to bring colloidal nanoparticles from suspension to specific locations of a substrate. However, its application has been limited to the fabrication of arrays of isolated nanoparticles because, until now, it was never possible to bring nanoparticles closer together than approximately 300 nm. Here, we propose this limitation is due to thermophoretic repulsive forces generated by plasmonic heating of the NPs.

View Article and Find Full Text PDF

Gold nanoparticles (NP) trapped in the mesopores of mixed zirconia-ceria thin films are prepared in a straightforward and reproducible way. The films exhibit enhanced stability and excellent catalytic activity in nitro-group reduction by borohydride and electrocatalytic activity in CO and ethanol oxidation and oxygen reduction.

View Article and Find Full Text PDF

Highly porous (V(mesopore) = 25-50%) and ordered mesoporous titania thin films (MTTF) were prepared on ITO (indium tin oxide)-covered glass by a fast two-step method. The effects of substrate surface modification and thermal treatment on pore order, accessibility and crystallinity of the MTTF were systematically studied for MTTF deposited onto bare and titania-modified ITO. MTTF exposed briefly to 550 °C resulted in highly ordered films with grid-like structures, enlarged pore size, and increased accessible pore volume when prepared onto the modified ITO substrate.

View Article and Find Full Text PDF