A new and versatile technique for the wafer scale nanofabrication of silicon nanowire (SiNW) and multiwalled carbon nanotube (MWNT) tips on atomic force microscope (AFM) probes is presented. Catalyst material for the SiNW and MWNT growth was deposited on prefabricated AFM probes using aligned wafer scale nanostencil lithography. Individual vertical SiNWs were grown epitaxially by a catalytic vapor-liquid-solid (VLS) process and MWNTs were grown by a plasma-enhanced chemical vapor (PECVD) process on the AFM probes.
View Article and Find Full Text PDFWhen a carbon nanotube emitter is operated at high currents (typically above 1 microA per emitter), a small voltage drop ( approximately few volts) along its length or at its contact generates a reverse/canceling electric field that causes a saturation-like deviation from the classical Fowler-Nordheim behavior with respect to the applied electric field. We present a correction to the Fowler-Nordheim equation to account for this effect, which is experimentally verified using field emission and contact electrical measurements on individual carbon nanotube emitters. By using rapid thermal annealing to improve both the crystallinity of the carbon nanotubes and their electrical contact to the substrate, it is possible to reduce this voltage drop, allowing very high currents of up to 100 microA to be achieved per emitter with no significant deviation from the classical Fowler-Nordheim behavior.
View Article and Find Full Text PDF