Ultrathin amorphous silica membranes with embedded organic molecular wires (oligo(-phenylenevinylene), three aryl units) provide chemical separation of incompatible catalytic environments of CO reduction and HO oxidation while maintaining electronic and protonic coupling between them. For an efficient nanoscale artificial photosystem, important performance criteria are high rate and directionality of charge flow. Here, the visible-light-induced charge flow from an anchored Ru bipyridyl light absorber across the silica nanomembrane to CoO water oxidation catalyst is quantitatively evaluated by photocurrent measurements.
View Article and Find Full Text PDF