Publications by authors named "Ian Weidling"

Background: Impaired metabolic function and mitochondrial metabolism increase risk of Alzheimer's Disease (AD) development, which is the leading form of dementia and one of the main causes of death in older adults. Altered mitochondrial function can reduce efficiency of cellular maintenance processes like mitophagy and proteostasis, leading to protein aggregation and cytotoxicity. Mitochondria differ from other organelles, as they have their own unique genetic component (mtDNA), which encodes proteins essential for mitochondrial translation and oxidative metabolism.

View Article and Find Full Text PDF

Background: Mitochondria can trigger Alzheimer's disease (AD)-associated molecular phenomena, but how mitochondria impact apolipoprotein E (APOE; apoE) is not well known.

Objective: Consider whether and how mitochondrial biology influences APOE and apoE biology.

Methods: We measured APOE expression in human SH-SY5Y neuronal cells with different forms of mitochondrial dysfunction including total, chronic mitochondrial DNA (mtDNA) depletion (ρ0 cells); acute, partial mtDNA depletion; and toxin-induced mitochondrial dysfunction.

View Article and Find Full Text PDF

While ketone bodies support overall brain energy metabolism, it is increasingly clear specific brain cell types respond differently to ketone body availability. Here, we characterized how SH-SY5Y neuroblastoma cell, primary neuron, and primary astrocyte bioenergetics and nutrient sensing pathways respond to β-hydroxybutyrate (βOHB). SH-SY5Y cells and primary neurons, but not astrocytes, exposed to βOHB increased respiration and decreased PI3K-Akt-mTOR signaling.

View Article and Find Full Text PDF

Ketogenic diets (KDs) alter brain metabolism. Multiple mechanisms may account for their effects, and different brain regions may variably respond. Here, we considered how a KD affects brain neuron and astrocyte transcription.

View Article and Find Full Text PDF

We screened cell line and plasma-derived exosomes for molecules that localize to mitochondria or that reflect mitochondrial integrity. SH-SY5Y cell-derived exosomes contained humanin, citrate synthase, and fibroblast growth factor 21 protein, and plasma-derived exosomes contained humanin, voltage-dependent anion-selective channel 1, and transcription factor A protein. Nuclear mitochondrial (NUMT) DNA complicated analyses of mitochondrial DNA (mtDNA), which otherwise suggested exosomes contain at most very low amounts of extended mtDNA sequences but likely contain degraded pieces of mtDNA.

View Article and Find Full Text PDF

Background: Mitochondrial dysfunction and tau aggregation occur in Alzheimer's disease (AD), and exposing cells or rodents to mitochondrial toxins alters their tau.

Objective: To further explore how mitochondria influence tau, we measured tau oligomer levels in human neuronal SH-SY5Y cells with different mitochondrial DNA (mtDNA) manipulations.

Methods: Specifically, we analyzed cells undergoing ethidium bromide-induced acute mtDNA depletion, ρ0 cells with chronic mtDNA depletion, and cytoplasmic hybrid (cybrid) cell lines containing mtDNA from AD subjects.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a progressive brain disorder characterized by memory loss and the accumulation of two insoluble protein aggregates, tau neurofibrillary tangles and beta-amyloid plaques. Widespread mitochondrial dysfunction also occurs and mitochondria from AD patients display changes in number, ultrastructure, and enzyme activities. Mitochondrial dysfunction in AD presumably links in some way to its other disease characteristics, either as a cause or consequence.

View Article and Find Full Text PDF

Alzheimer's disease (AD) patients display widespread mitochondrial defects. Brain hypometabolism occurs alongside mitochondrial defects, and correlates well with cognitive decline. Numerous theories attempt to explain AD mitochondrial dysfunction.

View Article and Find Full Text PDF

Recent association studies indicate several genes highly expressed by microglia influence Alzheimer's disease (AD) risk, which suggests microglial function contributes to this disease. Here, we evaluated how one component of microglial function, cytokine release, affects AD-related phenomena. First, we used a 3-hour lipopolysaccharide (LPS) treatment to activate mouse BV2 microglial cells.

View Article and Find Full Text PDF

Ketogenic diets induce hepatocyte fatty acid oxidation and ketone body production. To further evaluate how ketogenic diets affect hepatocyte bioenergetic infrastructure, we analyzed livers from C57Bl/6J male mice maintained for 1 month on a ketogenic or standard chow diet. Compared with the standard diet, the ketogenic diet increased cytosolic and mitochondrial protein acetylation and also altered protein succinylation patterns.

View Article and Find Full Text PDF

Inflammation is increasingly implicated in neurodegenerative disease pathology. As no acquired pathogen appears to drive this inflammation, the question of what does remains. Recent advances indicate damage-associated molecular pattern (DAMP) molecules, which are released by injured and dying cells, can cause specific inflammatory cascades.

View Article and Find Full Text PDF

Mitochondria and mitochondrial debris are found in the brain's extracellular space, and extracellular mitochondrial components can act as damage associated molecular pattern (DAMP) molecules. To characterize the effects of potential mitochondrial DAMP molecules on neuroinflammation, we injected either isolated mitochondria or mitochondrial DNA (mtDNA) into hippocampi of C57BL/6 mice and seven days later measured markers of inflammation. Brains injected with whole mitochondria showed increased Tnfα and decreased Trem2 mRNA, increased GFAP protein, and increased NFκB phosphorylation.

View Article and Find Full Text PDF

This Editorial highlights a study by Singh and coworkers in the current issue of Journal of Neurochemistry, in which the authors present additional evidence that AMPKα1 is reduced in X-linked adrenoleukodystrophy (X-ALD). They make a case for increasing AMPKα1 activity for therapeutic purposes in this disease, and indicate how this goal may be achieved. Read the highlighted article 'Metformin-induced mitochondrial function and ABCD2 up regulation in X-linked adrenoleukodystrophy involves AMP activated protein kinase' on page 86.

View Article and Find Full Text PDF

We tested how the addition of oxaloacetate (OAA) to SH-SY5Y cells affected bioenergetic fluxes and infrastructure, and compared the effects of OAA to malate, pyruvate, and glucose deprivation. OAA displayed pro-glycolysis and pro-respiration effects. OAA pro-glycolysis effects were not a consequence of decarboxylation to pyruvate because unlike OAA, pyruvate lowered the glycolysis flux.

View Article and Find Full Text PDF