Microcapsules for high cell density culture of mammalian cells have found an increasing interest, however, the poor stability of the microcapsules and the lack of characterisation methods led to few quantitative results. Alginate-poly-L-lysine (PLL) microcapsules have been studied in detail in order to form a basis for comparison of capsules made from different polymers. Since the microcapsules can be easily retained in the bioreactor without the need for a cell separation device, high cell densities were achieved with a maximum of 4 × 10(7) cell/ml(microcapsules), corresponding to a colonisation of 5% of the internal capsule volume.
View Article and Find Full Text PDFHost cell proteins (HCPs) are bioprocess-related impurities arising from cell-death or secretion from nonhuman cells used for recombinant protein production. Clearance of HCPs through downstream purification (DSP) is required to produce safe and efficacious therapeutic proteins. While traditionally measured using anti-HCP ELISA, more in-depth approaches for HCP characterization may ensure that risks to patients from HCPs are adequately assessed.
View Article and Find Full Text PDFObjectives: Colorectal cancer (CRC) is a life-threatening disease that can develop as a consequence of a sustained chronic inflammatory pathology of the colon. Although not devoid of side effects, the anti-inflammatory drug celecoxib (CLX) has been shown to exert protective effects in CRC therapy. The purpose of this study was to develop and characterise a novel CLX microbead formulation suitable for use in the treatment and prevention of CRC, which has the potential to minimise the side effects associated with CLX.
View Article and Find Full Text PDFSignificant improvements in the productivity and quality of therapeutic proteins produced in Chinese hamster ovary (CHO) cells have been reported since their establishment as host cells for biopharmaceutical production. Initial advances in the field focused on engineering strategies to manipulate genes associated with proliferation, apoptosis, and various metabolic pathways. Process engineering efforts to optimize culture media, batch-feeding strategies and culture conditions, including temperature and osmolarity, were also reported.
View Article and Find Full Text PDFThe purpose of this study was to develop a novel multipaticulate drug delivery technology suitable for the delivery of pre-solubilized celecoxib to the gastrointestinal tract and more specifically to the colon. The solubility of celecoxib in a range of oils, surfactants and co-solvents was evaluated. Celecoxib was solubilized in mixtures of these vehicles to produce liquid formulations.
View Article and Find Full Text PDFUnderstanding the growth characteristics of microorganisms is an essential step in bioprocessing, not only because product formation may be growth-associated but also because they might influence cell physiology and thereby product quality. The specific growth rate, a key variable of many bioprocesses, cannot be measured directly and relies on the estimation through other measurable variables such as biomass, substrate, or product concentrations. Techniques for real-time estimation of the specific growth rate in microbial fed-batch cultures are discussed in the present paper.
View Article and Find Full Text PDFFor over a half a century now, microencapsulation has played a very important role in many industries and in the recent decades, this versatile technology has been applied to numerous biotechnology and medical processes. However, successful application in these areas requires a methodology which has the capability to produce mono-dispersed, homogenous-shaped capsules, with a narrow size distribution, using a short production time. The manufacture of capsules using vibrating technology has gained significant interest mainly due to its simplistic approach to produce homogenous microcapsules with the desired characteristics for biotechnological and medical processes.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
January 2012
Biological reaction calorimetry, also known as biocalorimetry, has led to extensive applications in monitoring and control of different bioprocesses. A simple real-time estimator for biomass and growth rate was formulated, based on in-line measured metabolic heat flow values. The performance of the estimator was tested in a unique bench-scale calorimeter (BioRC1), improved to a sensitivity range of 8 mW l(-1) in order to facilitate the monitoring of even weakly exothermic biochemical reactions.
View Article and Find Full Text PDFThe molecular complex "Heat shock protein 90" has become a novel target for anticancer drugs in recent times on account of its ability to perform as a chaperone toward proteins involved in cancer progression. The geldanamycin binds to this complex with high affinity and prevents it from performing correctly, which results in tumor destruction. The aim of this study was to investigate the feasibility of applying liquid-core microcapsules as a novel technique (termed "capsular perstraction"), for the recovery and purification of geldanamycin from culture media.
View Article and Find Full Text PDFReliable control of the specific growth rate (μ) in fed-batch fermentations depends on the availability of accurate online estimations of the controlled variable. Due to difficulties in measuring biomass, μ is typically estimated using reference models relating measurements of substrate consumption or oxygen uptake rate to biomass growth. However, as culture conditions vary, these models are adapted dynamically, resulting in complex algorithms that lack the necessary robustness for industrial applicability.
View Article and Find Full Text PDFIn recent years ever-increasing amounts of pharmaceuticals are being detected in the aquatic environment and in some cases, they have even been discovered in drinking water. Their presence is attributed mainly to the inability of sewage treatment plants to adequately remove these compounds from the sewage influent. The aim of this study was to investigate the feasibility, kinetics and efficiency of using liquid-core microcapsules as a novel methodology, termed capsular perstraction, to remove seven pharmaceuticals commonly found in the environment, from water.
View Article and Find Full Text PDFReal-time data reconciliation of concentration estimates of process analytes and biomass in microbial fermentations is investigated. A Fourier-transform mid-infrared spectrometer predicting the concentrations of process metabolites is used in parallel with a dielectric spectrometer predicting the biomass concentration during a batch fermentation of the yeast Saccharomyces cerevisiae. Calibration models developed off-line for both spectrometers suffer from poor predictive capability due to instrumental and process drifts unseen during calibration.
View Article and Find Full Text PDFMicroencapsulation offers a unique potential for high cell density, high productivity mammalian cell cultures. However, for successful exploitation there is the need for microcapsules of defined size, properties and mechanical stability. Four types of alginate/poly-L: -Lysine microcapsules, containing recombinant CHO cells, have been investigated: (a) 800 mum liquid core microcapsules, (b) 500 mum liquid core microcapsules, (c) 880 mum liquid core microcapsules with a double PLL membrane and (d) 740 mum semi-liquid core microcapsules.
View Article and Find Full Text PDFThis work evaluates three techniques of calibrating capacitance (dielectric) spectrometers used for on-line monitoring of biomass: modeling of cell properties using the theoretical Cole-Cole equation, linear regression of dual-frequency capacitance measurements on biomass concentration, and multivariate (PLS) modeling of scanning dielectric spectra. The performance and robustness of each technique is assessed during a sequence of validation batches in two experimental settings of differing signal noise. In more noisy conditions, the Cole-Cole model had significantly higher biomass concentration prediction errors than the linear and multivariate models.
View Article and Find Full Text PDFThis paper describes the development of a new method to obtain aqueous-core microcapsules from organic-core capsules. The direct production of microcapsules, using tripropionin as organic material, followed by the hydrolysis of the core by a lipase was investigated. The enzymatic study showed that the enzyme obeyed a Michaelis-Menten mechanism and conditions for optimal activity were pH 7.
View Article and Find Full Text PDFA single spectra library was used to monitor on-line, by mid-infrared spectroscopy, nine different batch cultures of Escherichia coli performed with various medium compositions, including chemically complex formulations. Whereas the classic chemometrics approach would have required the preparation and measurement of hundreds of standards, only six spectra were included in the library. These included the molar absorbance of the four main metabolites (i.
View Article and Find Full Text PDFBiotechnol Bioeng
May 2008
An on-line pH monitoring method based on mid-infrared spectroscopy relevant to bioprocesses is presented. This approach is non-invasive and does not require the addition of indicators or dyes, since it relies on the analysis of species of common buffers used in culture media, such as phosphate buffer. Starting with titrations of phosphoric and acetic acid solutions over almost the entire pH range (2-12), it was shown that the infrared spectra of all samples can be expressed as a linear combination of the molar absorbance of the acids and their deprotonated forms.
View Article and Find Full Text PDFA recombinant avidin-producing Mut+ Pichia pastoris strain was used as a model organism to study the influence of the methanol feeding strategy on the specific product productivity (q(p)) and protein glycosylation. Fed-batch cultivations performed at various specific growth rates (micro) and residual methanol concentrations showed that the specific avidin productivity is growth-dependent. The specific productivity increases strongly with the specific growth rate for micro ranging from 0 to 0.
View Article and Find Full Text PDFThe advantages of mixed feeds of sorbitol and methanol for the production of recombinant proteins with Pichia pastoris were analyzed quantitatively. The influence of the methanol-sorbitol ratio in the feed medium was investigated on growth stoichiometry and recombinant protein productivity with a P. pastoris Mut(+) strain secreting avidin by performing a transient nutrient gradient in continuous cultivation at a dilution rate of 0.
View Article and Find Full Text PDFIn order to significantly reduce the time involved in mid-infrared spectroscopy calibrations, a novel approach based on a library of pure component spectra was developed and tested with an aerobic Saccharomyces cerevisiae fermentation. Instead of the 30-50 standards that would have been required to build a chemometric model, only five solutions were used to assemble the library, namely one for each compound (glucose, ethanol, glycerol, ammonium and acetate). Concentration profiles of glucose, ethanol and ammonium were monitored with a fair accuracy, leading to standard error of prediction (SEP) values of 0.
View Article and Find Full Text PDFMid-infrared FTIR spectroscopy is an efficient tool for the monitoring of bioprocesses, since it is fast and able to detect many compounds simultaneously. However, complex and time-consuming calibration procedures are still required, and have inhibited the spreading of these instruments. A simple and quick method to calibrate a FTIR instrument was developed for the control of fed-batch fermentations of the methylotrophic yeast Pichia pastoris.
View Article and Find Full Text PDFA new approach combining electrostatic and covalent bonds was established for the formation of resistant capsules with long-term stability under physiological conditions. Three kinds of interactions were generated in the same membrane: (1) electrostatic bonds between alginate and poly-L-lysine (PLL), (2) covalent bonds (amides) between propylene-glycol-alginate (PGA) and PLL, and (3) covalent bonds (amides) between BSA and PGA. Down-scaling of the capsules size (< or =1 mm diameter) with a jet break-up technology was achieved by modifying the rheological properties of the polymer solution.
View Article and Find Full Text PDFThis paper attempts to review in how far thermodynamic analysis can be used to understand and predict the performance of microorganisms with respect to growth and bio-product synthesis. In the first part, a simple thermodynamic model of microbial growth is developed which explains the relationship between the driving force for growth in terms of Gibbs energy dissipation and biomass yield. From the currently available literature, it appears that the Gibbs energy dissipation per C-mol of biomass grown, which represents the driving force for chemotrophic growth, may have been adapted by evolutionary processes to strike a reasonable compromise between metabolic rate and growth efficiency.
View Article and Find Full Text PDFThe effect of the presence of metabolism-induced concentration correlations in the calibration samples on the prediction performance of partial least-squares regression (PLSR) models and mid-infrared spectra from Chinese hamster ovary cell cultures was investigated. Samples collected from batch cultures contained highly correlated metabolite concentrations as a result of metabolic relations. Calibrations based on such samples could only be used to predict concentrations in new samples if a similar correlation structure was present and failed when the new samples were randomly spiked with the analytes.
View Article and Find Full Text PDF