Publications by authors named "Ian W Jeffrey"

Tumour cells are often sensitized by interferons to the effects of tumour necrosis factor-alpha-related apoptosis-inducing ligand (TRAIL). We have demonstrated previously that TRAIL has an inhibitory effect on protein synthesis [Jeffrey IW, Bushell M, Tilleray VJ, Morley S & Clemens MJ (2002) Cancer Res62, 2272-2280] and we have therefore examined the consequences of prior interferon-alpha treatment for the sensitivity of translation to inhibition by TRAIL. Interferon treatment alone has only a minor effect on protein synthesis but it sensitizes both MCF-7 cells and HeLa cells to the downregulation of translation by TRAIL.

View Article and Find Full Text PDF

Activation of a temperature-sensitive form of p53 in murine erythroleukaemia cells results in a rapid impairment of protein synthesis that precedes inhibition of cell proliferation and loss of cell viability by several hours. The inhibition of translation is associated with specific cleavages of polypeptide chain initiation factors eIF4GI and eIF4B, a phenomenon previously observed in cells induced to undergo apoptosis in response to other stimuli. Although caspase activity is enhanced in the cells in which p53 is activated, both the effects on translation and the cleavages of the initiation factors are completely resistant to inhibition of caspase activity.

View Article and Find Full Text PDF

The dsRNA-activated protein kinase PKR is involved in signal transduction pathways that mediate cellular processes as diverse as cell growth and differentiation, the stress response, and apoptosis. PKR was originally described as an interferon-inducible elF2alpha kinase involved in the antiviral defense mechanism of the cell. The interaction of the kinase with specific viral RNAs has been studied in much detail, but information about cellular mRNAs, which are able to bind and activate PKR, is scarce.

View Article and Find Full Text PDF

Exposure of mammalian cells to agents that induce apoptosis results in a rapid and substantial inhibition of protein synthesis. In MCF-7 breast cancer cells, tumor necrosis factor alpha (TNFalpha) and TNF-related apoptosis-inducing ligand inhibit overall translation by a mechanism that requires caspase (but not necessarily caspase-3) activity. This inhibition is associated with the increased phosphorylation of eukaryotic initiation factor (eIF2) alpha, increased association of eIF4E with the inhibitory eIF4E-binding protein (4E-BP1), and specific cleavages of eIF4B and eIF2alpha.

View Article and Find Full Text PDF