Publications by authors named "Ian Tetlow"

Starch branching enzymes (SBEs) are one of the major classes of enzymes that catalyze starch biosynthesis in plants. Here, we utilized the clustered regularly interspaced short palindromic repeats-CRISPR associated protein 9 (CRISPR-Cas9)-mediated gene editing system to investigate the effects of SBE mutation on starch structure and turnover in the oilseed crop Brassica napus. Multiple single-guide RNA (sgRNA) expression cassettes were assembled into a binary vector and two rounds of transformation were employed to edit all six BnaSBE genes.

View Article and Find Full Text PDF

Starch synthesis is an elaborate process employing several isoforms of starch synthases (SSs), starch branching enzymes (SBEs) and debranching enzymes (DBEs). In cereals, some starch biosynthetic enzymes can form heteromeric complexes whose assembly is controlled by protein phosphorylation. Previous studies suggested that SSIIa forms a trimeric complex with SBEIIb, SSI, in which SBEIIb is phosphorylated.

View Article and Find Full Text PDF

Starch is a water-insoluble polymer of glucose synthesized as discrete granules inside the stroma of plastids in plant cells. Starch reserves provide a source of carbohydrate for immediate growth and development, and act as long term carbon stores in endosperms and seed tissues for growth of the next generation, making starch of huge agricultural importance. The starch granule has a highly complex hierarchical structure arising from the combined actions of a large array of enzymes as well as physicochemical self-assembly mechanisms.

View Article and Find Full Text PDF

The enzyme starch synthase IIa (SSIIa) in cereals has catalytic and regulatory roles during the synthesis of amylopectin that influences the functional properties of the grain. Rice endosperm SSIIa is more active in accessions compared to lines due to functional SNP variations in the coding region of the structural gene. In this study, downregulating the expression of -type SSIIa in Nipponbare endosperm resulted in either shrunken or opaque grains with an elevated proportion of A-type starch granules.

View Article and Find Full Text PDF

The sucrose non-fermenting-1-related protein kinase 1 (SnRK1) is a highly conserved heterotrimeric protein kinase in plants. It possesses a catalytic subunit (α) and two regulatory subunits (β and γ). The effects of altered expression of AKINβ1 on carbohydrate metabolism and gene expression in leaves were investigated in an Arabidopsis T-DNA insertion mutant.

View Article and Find Full Text PDF

Starch synthase 2 (SS2) is an important enzyme in leaf starch synthesis, elongating intermediate-length glucan chains. Loss of SS2 results in a distorted starch granule phenotype and altered physiochemical properties, highlighting its importance in starch biosynthesis, however, the post-translational regulation of SS2 is poorly understood. In this study, a combination of bioinformatic and analysis of recombinant SS2 was used to identify and characterize SS2 post-translational regulatory mechanisms.

View Article and Find Full Text PDF

Starch is a water-insoluble polyglucan synthesized inside the plastid stroma within plant cells, serving a crucial role in the carbon budget of the whole plant by acting as a short-term and long-term store of energy. The highly complex, hierarchical structure of the starch granule arises from the actions of a large suite of enzyme activities, in addition to physicochemical self-assembly mechanisms. This review outlines current knowledge of the starch biosynthetic pathway operating in plant cells in relation to the micro- and macro-structures of the starch granule.

View Article and Find Full Text PDF

Starch commands a central role in the carbon budget of the majority of plants on earth, and its biological role changes during development and in response to the environment. Throughout the life of a plant, starch plays a dual role in carbon allocation, acting as both a source, releasing carbon reserves in leaves for growth and development, and as a sink, either as a dedicated starch store in its own right (in seeds and tubers), or as a temporary reserve of carbon contributing to sink strength, in organs such as flowers, fruits, and developing non-starchy seeds. The presence of starch in tissues and organs thus has a profound impact on the physiology of the growing plant as its synthesis and degradation governs the availability of free sugars, which in turn control various growth and developmental processes.

View Article and Find Full Text PDF

This study investigated the influence of diurnal photosynthetic activity on the morphology, molecular composition, crystallinity, and gelatinization properties of normal barley starch (NBS) and waxy barley starch (WBS) granules from plants cultivated in a greenhouse under normal diurnal (16h light) or constant light photosynthetic conditions. Growth rings were observed in all starch samples regardless of lighting conditions. The size distribution of whole and debranched WBS analyzed by gel-permeation chromatography did not appear to be influenced by the different lighting regimes, however, a greater relative crystallinity measured by wide-angle X-ray scattering and greater crystalline quality as judged by differential scanning calorimetry was observed under the diurnal lighting regime.

View Article and Find Full Text PDF

The amylopectin fractions from starch of a series of amylose-extender (ae) maize samples (HYLON(®) V, VII and VIII starches) were isolated and analysed for their molecular composition and structure. The fractions from all samples contained both a high and a low molecular weight fraction (HMF and LMF), of which LMF increased with the amylose content of the starch and appeared to have substantially more of long chains than HMF. A normal amylose-containing maize starch (NMS), which served as a reference sample, contained very little LMF, which suggested that LMF was the inherent result of the effect of the loss of starch branching enzyme IIb activity in the ae mutants.

View Article and Find Full Text PDF

Starch synthesis requires several enzymatic activities including branching enzymes (BEs) responsible for the formation of α(1 → 6) linkages. Distribution and number of these linkages are further controlled by debranching enzymes that cleave some of them, rendering the polyglucan water-insoluble and semi-crystalline. Although the activity of BEs and debranching enzymes is mandatory to sustain normal starch synthesis, the relative importance of each in the establishment of the plant storage polyglucan (i.

View Article and Find Full Text PDF

Second harmonic generation (SHG) microscopy is employed to study changes in crystalline organization due to altered gene expression and hydration in barley starch granules. SHG intensity and susceptibility ratio values (R'SHG ) are obtained using reduced Stokes-Mueller polarimetric microscopy. The maximum R'SHG values occur at moderate moisture indicating the narrowest orientation distribution of nonlinear dipoles from the cylindrical axis of glucan helices.

View Article and Find Full Text PDF

We have identified a novel means to achieve substantially increased vegetative biomass and oilseed production in the model plant Arabidopsis thaliana. Endogenous isoforms of starch branching enzyme (SBE) were substituted by either one of the endosperm-expressed maize (Zea mays L.) branching isozymes, ZmSBEI or ZmSBEIIb.

View Article and Find Full Text PDF

Amylopectin is a highly branched, organized cluster of glucose polymers, and the major component of rice starch. Synthesis of amylopectin requires fine co-ordination between elongation of glucose polymers by soluble starch synthases (SSs), generation of branches by branching enzymes (BEs), and removal of misplaced branches by debranching enzymes (DBEs). Among the various isozymes having a role in amylopectin biosynthesis, limited numbers of SS and BE isozymes have been demonstrated to interact via protein-protein interactions in maize and wheat amyloplasts.

View Article and Find Full Text PDF
Article Synopsis
  • The distribution of starch synthase I and starch branching enzyme IIb in cereal grains affects amylose content in endosperms.
  • Mutations in the SSIIa gene lead to changes in starch structure and amylose levels, varying in severity across barley, wheat, and rice.
  • The study indicates that the positioning of SSI and SBEIIb proteins is crucial in understanding these differences in amylose content, possibly due to post-translational regulation or changes in amylopectin structure.
View Article and Find Full Text PDF

The present study investigated the role of protein phosphorylation, and protein complex formation between key enzymes of amylopectin synthesis, in barley genotypes exhibiting "high amylose" phenotypes. Starch branching enzyme (SBE) down-regulated lines (ΔSBEIIa and ΔSBEIIb), starch synthase (SS)IIa (ssiia(-), sex6) and SSIII (ssiii(-), amo1) mutants were compared to a reference genotype, OAC Baxter. Down-regulation of either SBEIIa or IIb caused pleiotropic effects on SSI and starch phosphorylase (SP) and resulted in formation of novel protein complexes in which the missing SBEII isoform was substituted by SBEI and SP.

View Article and Find Full Text PDF

Little is known about the thermal properties and internal molecular structure of transitory starch. In this study, granule morphology, thermal properties, and the cluster structure of Arabidopsis leaf starch at beginning and end of the light period were explored. The structural properties of building blocks and clusters were evaluated by using diverse chromatographic techniques.

View Article and Find Full Text PDF

The origin of second harmonic generation (SHG) in starch granules was investigated using ab initio quantum mechanical modeling and experimentally examined using polarization-in, polarization-out (PIPO) second harmonic generation microscopy. Ab initio calculations revealed that the largest contribution to the SHG signal from A- and B-type allomorphs of starch originates from the anisotropic organization of hydroxide and hydrogen bonds mediated by aligned water found in the polymers. The hypothesis was experimentally tested by imaging maize starch granules under various hydration and heat treatment conditions that alter the hydrogen bond network.

View Article and Find Full Text PDF

Background: High temperature during grain filling affects yield, starch amylose content and activity of starch biosynthesis enzymes in basmati rice. To investigate the physiological mechanisms underpinning the effects of high temperature on rice grain, basmati rice was grown under two temperature conditions - 32 and 22 °C - during grain filling.

Results: High temperature decreased the grain filling period from 32 to 26 days, reducing yield by 6%, and caused a reduction in total starch (3.

View Article and Find Full Text PDF

Starch-branching enzymes (SBEs) are one of the four major enzyme classes involved in starch biosynthesis in plants and algae, and their activities play a crucial role in determining the structure and physical properties of starch granules. SBEs generate α-1,6-branch linkages in α-glucans through cleavage of internal α-1,4 bonds and transfer of the released reducing ends to C-6 hydroxyls. Starch biosynthesis in plants and algae requires multiple isoforms of SBEs and is distinct from glycogen biosynthesis in both prokaryotes and eukaryotes which uses a single branching enzyme (BE) isoform.

View Article and Find Full Text PDF

Protein-protein interactions between starch phosphorylase (SP) and other starch biosynthetic enzymes were investigated using isolated maize endosperm amyloplasts and a recombinant maize enzyme. Plastidial SP is a stromal enzyme existing as a multimeric protein in amyloplasts. Biochemical analysis of the recombinant maize SP indicated that the tetrameric form was catalytically active in both glucan-synthetic and phosphorolytic directions.

View Article and Find Full Text PDF

Changes in internal structure of amylopectin (AP) during wheat endosperm development were studied by isolating clusters and building blocks of AP from both large A-type and small B-type starch granules at different maturity stages up to harvest time at 49 days after anthesis (DAA). Clusters isolated from B-type granules had a degree of branching (DB) of 16.5-16.

View Article and Find Full Text PDF

In this study, starches extracted from wheat grains harvested at 7, 14, 28, and 35 days after anthesis (DAA) were used as a means of examining the molecular structure of amylopectin (AP) from developing wheat grain. Scanning electron microscopy of wheat grain cross-sections revealed the presence of endosperm at 7 DAA and contained lenticular-shaped developing large (A-type) granules. From 14 DAA onward, spherical-shaped small (B-type) granules coexisted with large granules in the endosperm.

View Article and Find Full Text PDF

Starch branching enzyme IIb (SBEIIb) plays a crucial role in amylopectin biosynthesis in maize endosperm by defining the structural and functional properties of storage starch and is regulated by protein phosphorylation. Native and recombinant maize SBEIIb were used as substrates for amyloplast protein kinases to identify phosphorylation sites on the protein. A multidisciplinary approach involving bioinformatics, site-directed mutagenesis, and mass spectrometry identified three phosphorylation sites at Ser residues: Ser(649), Ser(286), and Ser(297).

View Article and Find Full Text PDF