Publications by authors named "Ian Terry"

With rising interest in organic-based functional materials, it is important to understand the nature of magnetic and electrical transitions within these types of systems. One intriguing material is triethylammonium bis-7,7,8,8-tetracyanoquinodimethane (TEA(TCNQ)) where there is an order-disorder transition at ∼220 K. This work focuses on novel neutron scattering techniques to understand the motion of the TEA cations at this transition and explain why we see the dielectric behaviour and possible ferroelectricity within this type of system.

View Article and Find Full Text PDF

Pseudoxanthoma elasticum (PXE) is a rare genetic disorder caused by loss-of-function mutations in the gene. While PXE is characterized by ectopic mineralization of connective tissues clinically affecting the skin, eyes, and cardiovascular system, kidney stones were reported in some individuals with PXE. The aim of this study is to determine whether kidney stones are an incidental finding or a frequent manifestation of PXE.

View Article and Find Full Text PDF

The PhenX (consensus measures for Phenotypes and eXposures) Toolkit (https://www.phenxtoolkit.org/) is a publicly available, web-based catalog of recommended, well-established measurement protocols of phenotypes and exposures.

View Article and Find Full Text PDF

The search for ferromagnetic organic-based compounds has been a particular challenge to both chemists and physicists over the past few decades. The synthesis of the NiA, where A is an organic acceptor; tetracyanoethene (TCNE), 3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) or 7,7,8,8-tetracyanoquinodimethane (TCNQ) (Jain et al 2007 Nature 445 291), was reported to be a great advancement with claims that the ferromagnetism persisted to well above room temperature. There were, however some substantial flaws in the methodology associated with the synthesis and physical characterisation.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the synthesis and magnetic properties of rare-earth doped cobaltites, (RE)CoO, using microwave-assisted methods.
  • The crystal structure varies with the size of the rare-earth cation: LaCoO has a rhombohedral symmetry while Pr-Dy CoO exhibits orthorhombic symmetry.
  • The research also reveals that the magnetic properties of LaCoO, particularly the transitions of Co (d) spin states, change significantly when different rare-earth cations are introduced, leading to diverse magnetic behaviors in the materials.
View Article and Find Full Text PDF

With interest in charge transfer compounds growing steadily, it is important to understand all aspects of the underlying physics of these systems, including the properties of the defects and interfaces that are universally present in actual experimental systems. For the study of these defects and their interactions a spin-Peierls (SP) system provides a useful testing ground. This work presents an investigation within the SP phase of potassium TCNQF where anomalous features are observed in both the magnetic susceptibility and ESR spectra for temperatures between 60 K and 100 K.

View Article and Find Full Text PDF

Nickel nanoparticles have been created in an organic-based matrix by the reaction of Ni(COD)2 (COD = 1,5-bis-cyclooctadiene) and 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (TCNQF4). The size of the nickel nanoparticles can be controlled by the use of different solvents and inclusion of tetrahydrofuran (THF) within the reaction to stabilise the Ni(0) atoms from the Ni(COD)2. Materials are characterised with a combination of X-ray diffraction, electron microscopy and magnetometry and it is found that samples made using a halocarbon solvent resulted in clustered bulk Ni particles (size ≤ 10 nm) with anomalously high superparamagnetic blocking temperatures.

View Article and Find Full Text PDF

With the coming renaissance of nuclear power, heralded by new nuclear power plant construction in Finland, the issue of qualifying modern tools for calculation becomes prominent. Among the calculations required may be the determination of radiation levels outside the plant owing to skyshine. For example, knowledge of the degree of accuracy in the calculation of gamma skyshine through the turbine hall roof of a BWR plant is important.

View Article and Find Full Text PDF

The glut of fissile material from reprocessing plants and from the conclusion of the cold war has provided the opportunity to design new fuel types to beneficially dispose of such stocks by generating useful power. Thus, in addition to the normal reactor core complement of enriched uranium fuel assemblies, two other types are available on the world market. These are the ERU (enriched recycled uranium) and the MOX (mixed oxide) fuel assemblies.

View Article and Find Full Text PDF

We report here a new synthetic route to FePt nanoparticles using a stoichiometric mixture of Na2Fe(CO)4 and Pt(acac)2. The structure of FePt nanoparticles, their size, chemical composition, and magnetic property can be controlled by various synthetic parameters, such as the solvent type, nature, and molar ratio of surfactants and stabilizers, synthesis temperature, and purification process. Partially ordered fct (L10) nanoparticles with room temperature magnetic coercivity can be synthesized directly in tetracosane solution at 389 degrees C.

View Article and Find Full Text PDF