Publications by authors named "Ian T Vidamour"

Machine learning techniques are commonly used to model complex relationships but implementations on digital hardware are relatively inefficient due to poor matching between conventional computer architectures and the structures of the algorithms they are required to simulate. Neuromorphic devices, and in particular reservoir computing architectures, utilize the inherent properties of physical systems to implement machine learning algorithms and so have the potential to be much more efficient. In this work, we demonstrate that the dynamics of individual domain walls in magnetic nanowires are suitable for implementing the reservoir computing paradigm in hardware.

View Article and Find Full Text PDF