Biosensors (Basel)
July 2021
Electrochemical biosensors have potential applications for agriculture, food safety, environmental monitoring, sports medicine, biomedicine, and other fields. One of the primary challenges in this field is the immobilization of biomolecular probes atop a solid substrate material with adequate stability, storage lifetime, and reproducibility. This review summarizes the current state of the art for covalent bonding of biomolecules onto solid substrate materials.
View Article and Find Full Text PDFBiochem Biophys Res Commun
April 2020
Cellular interactions with the microenvironment are mediated by ligand-receptor bonds. Such ligand-receptor bond dynamics is known to be heavily dependent on the loading rate. However, the physiologically-relevant loading rate of living cells remains unknown.
View Article and Find Full Text PDFDue to their all-electrical nature, impedance biosensors have significant potential for use as simple and portable sensors for environmental studies and environmental monitoring. Detection of two endocrine-disrupting chemicals (EDC), norfluoxetine and BDE-47, is reported here by impedance biosensing, with a detection limit of 8.5 and 1.
View Article and Find Full Text PDFAn antibody-based analytical method for the detection of a chemical flame retardant using antibody fragments isolated from an alpaca has been developed. One specific chemical flame retardant congener, 2,2',4,4'-tetrabrominated diphenyl ether (BDE-47), is often the major poly-BDE (PBDE) congener present in human and environmental samples and that which is the most frequently detected. An alpaca was immunized with a surrogate of BDE-47 covalently attached to a carrier protein.
View Article and Find Full Text PDFA reagentless electrochemical impedance biosensor for detection of peanut protein Ara h 1, one of the allergenic proteins found in peanuts, has been demonstrated using an Au substrate onto which an antibody film has been immobilized. Following initial stabilization of the self-assembled monolayer (SAM) through which the antibody is immobilized, the biosensor substrate exhibits stable impedance spectra at different stages of substrate preparation. By fitting the impedance spectra to a Randles equivalent circuit, one can demonstrate that the charge-transfer resistance (R(ct)) increases and the differential capacitance (Cd) decreases with increasing concentration of Ara h 1, although R(ct) exhibits greater sensitivity.
View Article and Find Full Text PDFA new type of nanopore sensor design is reported for a reagent-less electrochemical biosensor with no analyte "tagging" by fluorescent molecules, nanoparticles, or other species. This sensor design involves immobilization within Au-coated nanopores of bacterial periplasmic binding proteins (bPBP), which undergo a wide-amplitude, hinge-twist motion upon ligand binding. Ligand binding thus triggers a reduction in the effective thickness of the immobilized protein film, which is detected as an increase in electrolyte conductivity (decrease in impedance) through the nanopores.
View Article and Find Full Text PDFAmplification of the electrochemical impedance and capacitance signals in a biosensor is demonstrated for the model fluorescein/anti-fluorescein system. Following immobilization of fluorescein onto Au through formation of a self-assembled monolayer, goat anti-fluorescein conjugated with 10-nm Au nanoparticles is introduced into the system. This results in an increase in the capacitance of approximately 400 nF/cm(2), whereas no change can be observed for goat anti-fluorescein without the Au nanoparticle conjugate.
View Article and Find Full Text PDF