Middle-aged and older adults with autism spectrum disorder may be susceptible to accelerated neurobiological changes in striato- and thalamo-cortical tracts due to combined effects of typical aging and existing disparities present from early neurodevelopment. Using magnetic resonance imaging, we employed diffusion-weighted imaging and automated tract-segmentation to explore striato- and thalamo-cortical tract microstructure and volume differences between autistic (n = 29) and typical comparison (n = 33) adults (40 to 70 years old). Fractional anisotropy, mean diffusivity, and tract volumes were measured for 14 striato-cortical and 12 thalamo-cortical tract bundles.
View Article and Find Full Text PDFIntroduction: In vivo myeloarchitectonic mapping based on Magnetic Resonance Imaging (MRI) provides a unique view of gray matter myelin content and offers information complementary to other morphological indices commonly employed in studies of autism spectrum disorder (ASD). The current study sought to determine if intracortical myelin content (MC) and its age-related trajectories differ between middle aged to older adults with ASD and age-matched typical comparison participants.
Methods: Data from 30 individuals with ASD and 36 age-matched typical comparison participants aged 40-70 years were analyzed.
Individuals with autism spectrum disorder (ASD) show motor impairment into adulthood and risk decline during aging, but little is known about brain changes in aging adults with ASD. Few studies of ASD have directly examined the corticospinal tract (CST)-the major descending pathway in the brain responsible for voluntary motor behavior-outside its primary motor (M1) connections. In 26 middle-aged adults with ASD and 26 age-matched typical comparison participants, we used diffusion imaging to examine the microstructure and volume of CST projections from M1, dorsal premotor (PMd), supplementary motor area (SMA), and primary somatosensory (S1) cortices with respect to age.
View Article and Find Full Text PDF