Publications by authors named "Ian Schoenhofen"

Glycosylation is a key quality attribute that must be closely monitored for protein therapeutics. Established assays such as HILIC-Fld of released glycans and LC-MS of glycopeptides work well for glycoproteins with a few glycosylation sites but are less amenable for those with multiple glycosylation sites, resulting in complex datasets that are time consuming to generate and difficult to analyze. As part of efforts to improve preparedness for future pandemics, researchers are currently assessing where time can be saved in the vaccine development and production process.

View Article and Find Full Text PDF

Nonulosonic acids or non-2-ulosonic acids (NulOs) are an ancient family of 2-ketoaldonic acids (α-ketoaldonic acids) with a 9-carbon backbone. In nature, these monosaccharides occur either in a 3-deoxy form (referred to as "sialic acids") or in a 3,9-dideoxy "sialic-acid-like" form. The former sialic acids are most common in the deuterostome lineage, including vertebrates, and mimicked by some of their pathogens.

View Article and Find Full Text PDF

Surface expression of the common vertebrate sialic acid (Sia) -acetylneuraminic acid (Neu5Ac) by commensal and pathogenic microbes appears structurally to represent "molecular mimicry" of host sialoglycans, facilitating multiple mechanisms of host immune evasion. In contrast, ketodeoxynonulosonic acid (Kdn) is a more ancestral Sia also present in prokaryotic glycoconjugates that are structurally quite distinct from vertebrate sialoglycans. We detected human antibodies against Kdn-terminated glycans, and sialoglycan microarray studies found these anti-Kdn antibodies to be directed against Kdn-sialoglycans structurally similar to those on human cell surface Neu5Ac-sialoglycans.

View Article and Find Full Text PDF

Human metabolic incorporation of nonhuman sialic acid (Sia) N-glycolylneuraminic acid into endogenous glycans generates inflammation via preexisting antibodies, which likely contributes to red meat-induced atherosclerosis acceleration. Exploring whether this mechanism affects atherosclerosis in end-stage renal disease (ESRD), we instead found serum accumulation of 2-keto-3-deoxy-d-glycero-d-galacto-2-nonulosonic acid (Kdn), a Sia prominently expressed in cold-blooded vertebrates. In patients with ESRD, levels of the Kdn precursor mannose also increased, but within a normal range.

View Article and Find Full Text PDF

As biologics have become a mainstay in the development of novel therapies, protein engineering tools to expand on their structural advantages, namely specificity, affinity, and valency are of interest. Antibodies have dominated this field as the preferred scaffold for biologics development while there has been limited exploration into the use of albumin with its unique physiological characteristics as a platform for biologics design. There has been a great deal of interest to create bispecific and more complex multivalent molecules to build on the advantages offered by protein-based therapeutics relative to small molecules.

View Article and Find Full Text PDF

Novel therapies to counteract multidrug-resistant gonorrhea are urgently needed. A unique gonococcal immune evasion strategy involves capping of lipooligosaccharide (LOS) with sialic acid by gonococcal sialyltransferase (Lst), utilizing host-derived CMP-sialic acid (CMP-Neu5Ac in humans). LOS sialylation renders gonococci resistant to complement and cationic peptides, and down-regulates the inflammatory response by engaging siglecs.

View Article and Find Full Text PDF

deploys a unique immune evasion strategy wherein the lacto--neotetraose termini of lipooligosaccharide (LOS) are "capped" by a surface LOS sialyltransferase (Lst), using extracellular host-derived CMP-sialic acid (CMP-Neu5Ac in humans). LOS sialylation enhances complement resistance by recruiting factor H (FH; alternative complement pathway inhibitor) and also by limiting classical pathway activation. Sialylated LOS also engages inhibitory Siglecs on host leukocytes, dampening innate immunity.

View Article and Find Full Text PDF

Within recent years it has become apparent that protein glycosylation is not limited to eukaryotes. Indeed, in Campylobacter jejuni, a Gram-negative bacterium, more than 60 of its proteins are known to be glycosylated. One of the sugars found in such glycosylated proteins is 2,4-diacetamido-2,4,6-trideoxy-α-d-glucopyranose, hereafter referred to as QuiNAc4NAc.

View Article and Find Full Text PDF

Legionaminic acids are analogs of sialic acid that occur in cell surface glycoconjugates of several bacteria. Because legionaminic acids share the same stereochemistry as sialic acid but differ at C7 and C9, they are interesting analogs to probe the impact of varying exocyclic moieties (C7-C9) on biological activities such as susceptibilities to sialidases, interactions with Siglecs and immunogenicity. There are currently no reports on the bacterial enzymes that transfer legionaminic acids to these cell surface glycoconjugates, but some mammalian and bacterial sialyltransferases display donor promiscuity and can use CMP-Leg5,7Ac efficiently enough to transfer Leg5,7Ac to their natural acceptor glycans.

View Article and Find Full Text PDF

The Gram-negative bacterium Campylobacter jejuni 81116 (Penner serotype HS:6) has a class E lipooligosaccharide (LOS) biosynthesis locus containing 19 genes, which encode for 11 putative glycosyltransferases, 1 lipid A acyltransferase and 7 enzymes thought to be involved in the biosynthesis of dideoxyhexosamine (ddHexN) moieties. Although the LOS outer core structure of C. jejuni 81116 is still unknown, recent mass spectrometry analyses suggest that it contains acetylated forms of two ddHexN residues.

View Article and Find Full Text PDF

Tannerella forsythia is an anaerobic, Gram-negative periodontal pathogen. A unique O-linked oligosaccharide decorates the bacterium's cell surface proteins and was shown to modulate the host immune response. In our study, we investigated the biosynthesis of the nonulosonic acid (NulO) present at the terminal position of this glycan.

View Article and Find Full Text PDF

Legionaminic acid, Leg5,7Ac2 , a nonulosonic acid like 5-acetamido neuraminic acid (Neu5Ac, sialic acid), is found in cell surface glycoconjugates of bacteria including the pathogens Campylobacter jejuni, Acinetobacter baumanii and Legionella pneumophila. The presence of Leg5,7Ac2 has been correlated with virulence in humans by mechanisms that likely involve subversion of the host's immune system or interactions with host cell surfaces due to its similarity to Neu5Ac. Investigation into its role in bacterial physiology and pathogenicity is limited as there are no effective sources of it.

View Article and Find Full Text PDF

Neisseria gonorrhoeae deploys a novel immune evasion strategy wherein the lacto-N-neotetraose (LNnT) structure of lipooligosaccharide (LOS) is capped by the bacterial sialyltransferase, using host cytidine-5'-monophosphate (CMP)-activated forms of the nine-carbon nonulosonate (NulO) sugar N-acetyl-neuraminic acid (Neu5Ac), a sialic acid (Sia) abundant in humans. This allows evasion of complement-mediated killing by recruiting factor H (FH), an inhibitor of the alternative complement pathway, and by limiting classical pathway activation ("serum-resistance"). We utilized CMP salts of six additional natural or synthetic NulOs, Neu5Gc, Neu5Gc8Me, Neu5Ac9Ac, Neu5Ac9Az, legionaminic acid (Leg5Ac7Ac) and pseudaminic acid (Pse5Ac7Ac), to define structural requirements of Sia-mediated serum-resistance.

View Article and Find Full Text PDF

Metabolic engineering of glycans present on antibodies and other glycoproteins is becoming an interesting research area for improving our understanding of the glycome. With knowledge of the sialic acid biosynthetic pathways, the experiments described in this report are based on a published procedure involving the addition of a synthesized azido-mannosamine sugar into cell culture media and evaluation of downstream expression as azido-sialic acid. This unique bioorthogonal sugar has the potential for a variety of "click chemistry" reactions through the azide linkage, which allow for it to be isolated and quantified given the choice of label.

View Article and Find Full Text PDF

Legionaminic acids (Leg) are bacterial analogs of neuraminic acid, with the same stereochemistry but different substituents at C5, C7 and C9. Hence they may be incorporated into useful analogs of sialoglycoconjugates, and we previously reported two sialyltransferases that could utilize cytidine monophosphate (CMP)-Leg5Ac7Ac for preparation of Leg glycoconjugates, which were resistant to sialidases [Watson DC, Leclerc S, Wakarchuk WW, Young NM. 2011.

View Article and Find Full Text PDF

Helicobacter pylori is motile by means of polar flagella, and this motility has been shown to play a critical role in pathogenicity. The major structural flagellin proteins have been shown to be glycosylated with the nonulosonate sugar, pseudaminic acid (Pse). This glycan is unique to microorganisms, and the process of flagellin glycosylation is required for H.

View Article and Find Full Text PDF

Background: Anandamide (Arachidonoyl ethanolamide) is a potent bioactive lipid studied extensively in humans, which regulates several neurobehavioral processes including pain, feeding and memory. Bioactivity is terminated when hydrolyzed into free arachidonic acid and ethanolamine by the enzyme fatty acid amide hydrolase (FAAH). In this study we report the identification of a FAAH homolog from Dictyostelium discoideum and its function to hydrolyze anandamide.

View Article and Find Full Text PDF

Glycomics which is the study of saccharides and genes responsible for their formation requires the continuous development of rapid and sensitive methods for the identification of glycan structures. It involves glycoanalysis which relies upon the development of methods for determining the structure and interactions of carbohydrates. For the application of functional glycomics to microbial virulence, carbohydrates and their associated metabolic and carbohydrate processing enzymes and respective genes can be identified and exploited as targets for drug discovery, glyco-engineering, vaccine design, and detection and diagnosis of diseases.

View Article and Find Full Text PDF

Flagella of the bacteria Helicobacter pylori and Campylobacter jejuni are important virulence determinants, whose proper assembly and function are dependent upon glycosylation at multiple positions by sialic acid-like sugars, such as 5,7-diacetamido-3,5,7,9-tetradeoxy-l-glycero-l-manno-nonulosonic acid (pseudaminic acid (Pse)). The fourth enzymatic step in the pseudaminic acid pathway, the hydrolysis of UDP-2,4-diacetamido-2,4,6-trideoxy-beta-l-altropyranose to generate 2,4-diacetamido-2,4,6-trideoxy-l-altropyranose, is performed by the nucleotide sugar hydrolase PseG. To better understand the molecular basis of the PseG catalytic reaction, we have determined the crystal structures of C.

View Article and Find Full Text PDF

Catch a tiger by the tail: We have demonstrated that by feeding nonmotile mutant C. jejuni bacteria with a neutral azide-labelled pseudaminic acid precursor we can restore their ability to generate functional flagella. The presence of azido-pseudaminic acid on the surface of the flagella provides a bio-orthogonal chemical handle that can be used to modify the flagellar proteins.

View Article and Find Full Text PDF

The sialic acid-like sugar 5,7-diacetamido-3,5,7,9-tetradeoxy-D-glycero-D-galacto-nonulosonic acid, or legion-aminic acid, is found as a virulence-associated cell-surface glycoconjugate in the Gram-negative bacteria Legionella pneumophila and Campylobacter coli. L. pneumophila serogroup 1 strains, causative agents of Legionnaire's disease, contain an alpha2,4-linked homopolymer of legionaminic acid within their lipopolysaccharide O-chains, whereas the gastrointestinal pathogen C.

View Article and Find Full Text PDF

UDP-N-acetylglucosamine 5-inverting 4,6-dehydratase (PseB) is a unique sugar nucleotide dehydratase that inverts the C-5'' stereocentre during conversion of UDP-N-acetylglucosamine to UDP-2-acetamido-2,6-dideoxy-beta-l-arabino-hexos-4-ulose. PseB catalyzes the first step in the biosynthesis of pseudaminic acid, which is found as a post-translational modification on the flagellin of Campylobacter jejuni and Helicobacter pylori. PseB is proposed to use its tightly bound NADP+ to oxidize UDP-GlcNAc at C-4'', enabling dehydration.

View Article and Find Full Text PDF

Campylobacter jejuni has systems for N- and O-linked protein glycosylation. Although biochemical evidence demonstrated that a pseC mutant in the O-linked pathway accumulated the product of pglF in the N-linked pathway, analyses of transformation frequencies and glycosylation statuses of N-glycosylated proteins indicated a partial suppression of pglF by pseC.

View Article and Find Full Text PDF