Publications by authors named "Ian R van Driel"

The immune response against Legionella longbeachae, a causative agent of the often-fatal Legionnaires' pneumonia, is poorly understood. Here, we investigated the specific roles of tissue-resident alveolar macrophages (AMs) and infiltrating phagocytes during infection with this pathogen. AMs were the predominant cell type that internalized bacteria 1 day after infection.

View Article and Find Full Text PDF

is the main etiological agent of Legionnaires' disease, a severe bacterial pneumonia. is initially engulfed by alveolar macrophages (AMs) and subvert normal cellular functions to establish a replicative vacuole. Cigarette smokers are particularly susceptible to developing Legionnaires' disease and other pulmonary infections; however, little is known about the cellular mechanisms underlying this susceptibility.

View Article and Find Full Text PDF

Interferon (IFN)-induced guanosine triphosphate hydrolysing enzymes (GTPases) have been identified as cornerstones of IFN-mediated cell-autonomous defence. Upon IFN stimulation, these GTPases are highly expressed in various host cells, where they orchestrate anti-microbial activities against a diverse range of pathogens such as bacteria, protozoan and viruses. IFN-induced GTPases have been shown to interact with various host pathways and proteins mediating pathogen control via inflammasome activation, destabilising pathogen compartments and membranes, orchestrating destruction via autophagy and the production of reactive oxygen species as well as inhibiting pathogen mobility.

View Article and Find Full Text PDF

Legionella pneumophila is an opportunistic human pathogen and causative agent of the acute pneumonia known as Legionnaire's disease. Upon inhalation, the bacteria replicate in alveolar macrophages (AM), within an intracellular vacuole termed the Legionella-containing vacuole. We recently found that, in vivo, IFNγ was required for optimal clearance of intracellular L.

View Article and Find Full Text PDF

Neutrophil elastase is a serine protease that has been implicated in the pathogenesis of inflammatory bowel disease. Due to post-translational control of its activation and high expression of its inhibitors in the gut, measurements of total expression poorly reflect the pool of active, functional neutrophil elastase. Fluorogenic substrate probes have been used to measure neutrophil elastase activity, though these tools lack specificity and traceability.

View Article and Find Full Text PDF

We have examined the influence of depleting plasmacytoid dendritic cells (pDC) in mice on the immune response to the gut pathogen , an organism that is a model for human attaching effacing pathogens such as enterohaemorraghic . A significantly higher number of were found in mice depleted of pDC from 7 days after infection and pDC depleted mice showed increased gut pathology and higher levels of mRNA encoding inflammatory cytokines in the colon upon infection. pDC-depletion led to a compromising of the gut mucosal barrier that may have contributed to increased numbers of in systemic organs.

View Article and Find Full Text PDF

Infection of C57BL/6 mice with wild-type Legionella pneumophila typically results in very mild disease. However, in mice where the cytosolic recognition of flagellin is impaired by mutation, L. pneumophila infection results in more severe lung inflammation that is reminiscent of Legionnaires' disease.

View Article and Find Full Text PDF

causes Legionnaires' disease, a severe and potentially fatal bacterial pneumonia in immunocompromised individuals. Despite the understanding that a robust inflammatory response is important for control of infection, our understanding of the network of molecular and cellular events within the lung that function to clear the bacterium is not clearly understood. This review compiles our understanding of the various molecular and cellular pathways stimulated upon infection with and considers recently published advances that focus on the immune response to in the lungs of mice.

View Article and Find Full Text PDF

How the immune system maintains peripheral tolerance under inflammatory conditions is poorly understood. Here we assessed the fate of gastritogenic T cells following inflammatory activation in vivo. Self-reactive T cells (A23 T cells) specific for the gastric H /K ATPase α subunit (HKα) were transferred into immunosufficient recipient mice and immunised at a site distant to the stomach with adjuvant containing the cognate HKα peptide antigen.

View Article and Find Full Text PDF

Thymus-derived regulatory T cells (Tregs) are essential for the maintenance of immunological tolerance. Diverse signalling pathways contribute to thymic Treg cells (tTregs) development; however, the role of mammalian target of rapamycin (mTOR) remains unclear. Rapamycin is a well-characterized inhibitor of mTOR complex 1 signalling and a potent inducer of Treg cells in the periphery.

View Article and Find Full Text PDF

Legionella pneumophila is the causative agent of Legionnaires' disease, a potentially fatal lung infection. Alveolar macrophages support intracellular replication of L. pneumophila, however the contributions of other immune cell types to bacterial killing during infection are unclear.

View Article and Find Full Text PDF

Depletion of Foxp3(+) CD4(+) regulatory T cells (Treg) in adults results in chronic inflammation and autoimmune disease. However, the impact of transient Treg-cell depletion on self-reactive responses is poorly defined. Here, we studied the effect of transient depletion of Treg cells on CD4(+) T-cell responses to endogenous self-antigens.

View Article and Find Full Text PDF

Breast cancer resistance protein (ABCG2), a member of the ATP-binding cassette transporters has been identified as a major determinant of multidrug resistance (MDR) in cancer cells, but ABC transporter inhibition has limited therapeutic value in vivo. In this research, we demonstrated that inhibition of efflux transporters ABCG2 induced the generation of tolerogenic DCs from human peripheral blood myeloid DCs (mDCs). ABCG2 expression was present in mDCs and was further increased by LPS stimulation.

View Article and Find Full Text PDF

It has been proposed that activation of dendritic cells (DCs) presenting self-antigens during inflammation may lead to activation of autoreactive T cells and the development of autoimmunity. To test this hypothesis, we examined the presentation of the autoantigen recognized in autoimmune gastritis, gastric H(+)/K(+) ATPase, which is naturally expressed in the stomach and is constitutively presented in the stomach-draining lymph nodes. Systemic administration to mice of the TLR9 agonist CpG DNA, agonist anti-CD40 Ab, or TLR4 agonist LPS all failed to abrogate the process of peripheral clonal deletion of H(+)/K(+) ATPase-specific CD4 T cells or promote the development of autoimmune gastritis.

View Article and Find Full Text PDF

The expression of the Ikaros transcription factor family member, Helios, has been shown to be associated with T-cell tolerance in both the thymus and the periphery. To better understand the importance of Helios in tolerance pathways, we have examined the expression of Helios in TCR-transgenic T cells specific for the gastric H(+) /K(+) ATPase, the autoantigen target in autoimmune gastritis. Analysis of H(+) /K(+) ATPase-specific T cells in mice with different patterns of H(+) /K(+) ATPase expression revealed that, in addition to the expression of Helios in CD4(+) Foxp3(+) regulatory T (Treg) cells, Helios is expressed by a large proportion of CD4(+) Foxp3(-) T cells in both the thymus and the paragastric lymph node (PgLN), which drains the stomach.

View Article and Find Full Text PDF

Legionella pneumophila is an accidental respiratory pathogen of humans that provokes a robust inflammatory response upon infection. While most people exposed to L. pneumophila will clear the infection, certain groups with underlying susceptibility will develop Legionnaires' disease.

View Article and Find Full Text PDF

Autoimmune disease can be prevented with immunosuppressive agents; however, the effectiveness of these treatments in advanced stage of disease and the fate of pathogenic T cells following such treatments are not clear. In this study we demonstrate that a single dose of in vitro-induced Treg cells (iTreg cells) resulted in the functional repair and restitution of stomach tissue that had been severely damaged in advanced autoimmune gastritis. iTreg cells caused depletion or inactivation of autoreactive naïve T cells that were antigen inexperienced, however, autoreactive effector/memory T cells persisted in treated mice, resulting in residual cellular infiltrates within the repaired stomach tissue.

View Article and Find Full Text PDF

Gastric acid secretion by the H(+)-K(+)-ATPase at the apical surface of activated parietal cells requires luminal K(+) provided by the KCNQ1/KCNE2 K(+) channel. However, little is known about the trafficking and relative spatial distribution of KCNQ1 and H(+)-K(+)-ATPase in resting and activated parietal cells and the capacity of KCNQ1 to control acid secretion. Here we show that inhibition of KCNQ1 activity quickly curtails gastric acid secretion in vivo, even when the H(+)-K(+)-ATPase is permanently anchored in the apical membrane, demonstrating a key role of the K(+) channel in controlling acid secretion.

View Article and Find Full Text PDF

Background: Pulmonary load of Legionella pneumophila in mice is normally determined by counting serial dilutions of bacterial colony forming units (CFU) on agar plates. This process is often tedious and time consuming. We describe a novel, rapid and versatile flow cytometric method that detects bacteria phagocytosed by neutrophils.

View Article and Find Full Text PDF

IL-17, produced by a distinct lineage of CD4(+) helper T (Th) cells termed Th17 cells, induces the production of pro-inflammatory cytokines from resident cells and it has been demonstrated that over-expression of IL-17 plays a crucial role in the onset of several auto-immune diseases. Here we examined the role of IL-17 in the pathogenesis of autoimmune gastritis, a disease that was previously believed to be mediated by IFN-γ. Significantly higher levels of IL-17 and IFN-γ were found in the stomachs and stomach-draining lymph nodes of mice with severe autoimmune gastritis.

View Article and Find Full Text PDF

Background And Aims: IL-is important in gastric damage, mucosal repair and gastric cancer progression. We analysed IL-11 expression in H.pylori infected mouse stomach, the site of gastric IL-11 expression in mice and humans, and the effect of exogenous IL-11 on gastric mucosal homeostasis.

View Article and Find Full Text PDF

Autoimmune gastritis results from the breakdown of T cell tolerance to the gastric H(+)/K(+) ATPase. The gastric H(+)/K(+) ATPase is responsible for the acidification of gastric juice and consists of an α subunit (H/Kα) and a β subunit (H/Kβ). Here we show that CD4(+) T cells from H/Kα-deficient mice (H/Kα(-/-)) are highly pathogenic and autoimmune gastritis can be induced in sublethally irradiated wildtype mice by adoptive transfer of unfractionated CD4(+) T cells from H/Kα(-/-) mice.

View Article and Find Full Text PDF

Background Information: Acid-secreting gastric parietal cells are polarized epithelial cells that harbour highly abundant and specialized, H+,K+ ATPase-containing, tubulovesicular membranes in the apical cytoplasm. The Golgi apparatus has been implicated in the biogenesis of the tubulovesicular membranes; however, an unanswered question is how a typical Golgi organization could regulate normal membrane transport within the membrane-dense cytoplasm of parietal cells.

Results: Here, we demonstrate that the Golgi apparatus of parietal cells is not the typical juxta-nuclear ribbon of stacks, but rather individual Golgi units are scattered throughout the cytoplasm.

View Article and Find Full Text PDF

Legionella pneumophila is an intracellular pathogen that replicates within alveolar macrophages. Through its ability to activate multiple host innate immune components, L. pneumophila has emerged as a useful tool to dissect inflammatory signaling pathways in macrophages.

View Article and Find Full Text PDF

This report describes advances in the understanding of how microbes elicit and evade immune responses and the sensing of pathogens by host cells that leads to the activation and production of intra- and extracellular signaling molecules.

View Article and Find Full Text PDF