Publications by authors named "Ian R Starr"

We studied the spatial distribution of the abnormal ventilation-perfusion (Va/Q) units in a porcine model of acute pulmonary thromboembolism (APTE), using the fluorescent microsphere (FMS) technique. Four piglets ( approximately 22 kg) were anesthetized and ventilated with room air in the prone position. Each received approximately 20 g of preformed blood clots at time t = 0 min via a large-bore central venous catheter, until the mean pulmonary arterial pressure reached 2.

View Article and Find Full Text PDF

Hypoxic pulmonary vasoconstriction (HPV) is thought to protect gas exchange by decreasing perfusion to hypoxic regions. However, with global hypoxia, non-uniformity in HPV may cause over-perfusion to some regions, leading to high-altitude pulmonary edema. To quantify the spatial distribution of HPV and regional PO2 (PRO2) among small lung regions (approximately 2.

View Article and Find Full Text PDF

Hypoxic pulmonary vasoconstriction (HPV) serves to maintain optimal gas exchange by decreasing perfusion to hypoxic regions. However, global hypoxia and nonuniform HPV may result in overperfusion of poorly constricted regions leading to local edema seen in high-altitude pulmonary edema. To quantify the spatial distribution of HPV and its response to regional Po2 (Pr(O2)) among small lung regions, five pigs were anesthetized and mechanically ventilated in the supine posture.

View Article and Find Full Text PDF

To investigate whether hypercapnic acidosis protects against ventilator-induced lung injury (VILI) in vivo, we subjected 12 anesthetized, paralyzed rabbits to high tidal volume ventilation (25 cc/kg) at 32 breaths per minute and zero positive end-expiratory pressure for 4 hours. Each rabbit was randomized to receive either an FI(CO(2)) to achieve eucapnia (Pa(CO(2)) approximately 40 mm Hg; n = 6) or hypercapnic acidosis (Pa(CO(2)) 80-100 mm Hg; n = 6). Injury was assessed by measuring differences between the two groups' respiratory mechanics, gas exchange, wet:dry weight, bronchoalveolar lavage fluid protein concentration and cell count, and injury score.

View Article and Find Full Text PDF