A long time ago, Brochard and de Gennes predicted the possibility of significantly decreasing the critical magnetic field of the Fredericksz transition (the magnetic Fredericksz threshold) in a mixture of nematic liquid crystals and ferromagnetic particles, the so-called ferronematics. This phenomenon is rarely measured to be large, due to soft homeotropic anchoring induced at the nanoparticle surface. Here we present an optical study of the magnetic Fredericksz transition combined with a light scattering study of the classical nematic liquid crystal: the pentylcyanobiphenyl (5CB), doped with 6 nm diameter magnetic and nonmagnetic nanoparticles.
View Article and Find Full Text PDFThe liquid crystal octylcyanobiphenyl (8CB) was doped with the chiral agent CB15 and spin-coated onto a substrate treated for planar alignment of the director, resulting in a film of thickness several hundred nm in the smectic-A phase. In both doped and undoped samples, the competing boundary conditions - planar alignment at the substrate and vertical alignment at the free surface - cause the liquid crystal to break into a series of flattened hemicylinders to satisfy the boundary conditions. When viewed under an optical microscope with crossed polarizers, this structure results in a series of dark and light stripes ("oily streaks") of period ∼1 μm.
View Article and Find Full Text PDFElectroclinic measurements are reported for two chiral liquid crystals above their bulk chiral isotropic-nematic phase transition temperatures. It is found that an applied electric field E induces a rotation θ [∝Ε] of the director in the very thin paranematic layers that are induced by the cell's two planar-aligning substrates. The magnitude of the electroclinic coefficient dθ/dE close to the transition temperature is comparable to that of a bulk chiral nematic, as well as to that of a parasmectic region above a bulk isotropic-to-chiral smectic-A phase.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
October 2013
Electroclinic measurements, in which an applied electric field E induces a rotation Δθ ([proportional]E) of the liquid crystal director about the electric field axis in a chiral environment, were performed on several configurationally achiral liquid crystals in the presence of an imposed helical director profile. This imposed twist establishes a chiral symmetry environment for the liquid crystal. It was observed that a conformationally racemic mesogen possessing a flexible phenyl benzoate core exhibits a measurable electroclinic response in the nematic phase.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
July 2012
The surface electroclinic effect, which is a rotation of the molecular director in the substrate plane proportional to an electric field E applied normal to the substrate, requires both a chiral environment and C(2) (or lower) rotational symmetry about E. The two symmetries typically are created in tandem by manipulating the surface topography, a process that conflates their effects. Here we use a pair of rubbed polymer-coated substrates in a twist geometry to obtain our main result, viz.
View Article and Find Full Text PDF